We make more accessible a neglected simple continued fraction based algorithm due to Lagrange, for deciding the solubility of in relatively prime integers , where , gcd is not a perfect square. In the case of solubility, solutions with least positive y, from each equivalence class, are also constructed. Our paper is a generalisation of an earlier paper by the author on the equation . As in that paper, we use a lemma on unimodular matrices that gives a much simpler proof than Lagrange’s for the necessity of the existence of a solution. Lagrange did not discuss an exceptional case which can arise when . This was done by M. Pavone in 1986, when , where . We only need the special case of his result and give a self-contained proof, using our unimodular matrix approach.
Nous revisitons un algorithme dû à Lagrange, basé sur le développement en fraction continue, pour résoudre l’équation en les entiers premiers entre eux, où , pgcd n’est pas un carré.
@article{JTNB_2002__14_1_257_0,
author = {Matthews, Keith},
title = {The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {257--270},
year = {2002},
publisher = {Universit\'e Bordeaux I},
volume = {14},
number = {1},
mrnumber = {1926002},
zbl = {1018.11013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JTNB_2002__14_1_257_0/}
}
TY - JOUR AU - Matthews, Keith TI - The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$ JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 257 EP - 270 VL - 14 IS - 1 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_2002__14_1_257_0/ LA - en ID - JTNB_2002__14_1_257_0 ER -
Matthews, Keith. The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 257-270. http://geodesic.mathdoc.fr/item/JTNB_2002__14_1_257_0/