Voir la notice de l'article provenant de la source Numdam
We make more accessible a neglected simple continued fraction based algorithm due to Lagrange, for deciding the solubility of in relatively prime integers , where , gcd is not a perfect square. In the case of solubility, solutions with least positive y, from each equivalence class, are also constructed. Our paper is a generalisation of an earlier paper by the author on the equation . As in that paper, we use a lemma on unimodular matrices that gives a much simpler proof than Lagrange’s for the necessity of the existence of a solution. Lagrange did not discuss an exceptional case which can arise when . This was done by M. Pavone in 1986, when , where . We only need the special case of his result and give a self-contained proof, using our unimodular matrix approach.
Nous revisitons un algorithme dû à Lagrange, basé sur le développement en fraction continue, pour résoudre l’équation en les entiers premiers entre eux, où , pgcd n’est pas un carré.
@article{JTNB_2002__14_1_257_0, author = {Matthews, Keith}, title = {The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {257--270}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {1}, year = {2002}, mrnumber = {1926002}, zbl = {1018.11013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_2002__14_1_257_0/} }
TY - JOUR AU - Matthews, Keith TI - The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$ JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 257 EP - 270 VL - 14 IS - 1 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_2002__14_1_257_0/ LA - en ID - JTNB_2002__14_1_257_0 ER -
Matthews, Keith. The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 1, pp. 257-270. http://geodesic.mathdoc.fr/item/JTNB_2002__14_1_257_0/