Voir la notice de l'article provenant de la source Numdam
For an irrational real number and real number we consider the inhomogeneous approximation constant
Pour un nombre irrationnel et un nombre réel , on considère la constante d’approximation non-homogène
@article{JTNB_2001__13_2_539_0, author = {Pinner, Christopher G.}, title = {More on inhomogeneous diophantine approximation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {539--557}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {2}, year = {2001}, mrnumber = {1879672}, zbl = {1014.11043}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_2001__13_2_539_0/} }
TY - JOUR AU - Pinner, Christopher G. TI - More on inhomogeneous diophantine approximation JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 539 EP - 557 VL - 13 IS - 2 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_2001__13_2_539_0/ LA - en ID - JTNB_2001__13_2_539_0 ER -
Pinner, Christopher G. More on inhomogeneous diophantine approximation. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 539-557. http://geodesic.mathdoc.fr/item/JTNB_2001__13_2_539_0/
[1] The inhomogeneous minima of binary quadratic forms. Part I, Acta Math. 87 (1952), 259-323; Part II, Acta Math. 88 (1952), 279-316; Part III, Acta Math. 92 (1954), 199-234; Part IV (without second author) Acta Math. 92 (1954), 235-264. | Zbl
, ,[2] On inhomogeneous Diophantine approximation. J. Number Theory 48 (1994), 259-283. | Zbl | MR
, , ,[3] Non-homogeneous binary quadratic forms. Nederl. Akad. Wetensch. Proc. 50 (1947), 741-749, 909-917 = Indagationes Math. 9 (1947), 351-359, 420-428. | Zbl | MR
,[4] On inhomogeneous diophantine approximation and the Nishioka - Shiokawa- Tamura algorithm. Acta Arith. 86 (1998), 305-324. | Zbl | MR
,[5] On inhomogeneous Diophantine approximation, preprint.
, , ,[6] Non-homogeneous quadratic forms, I, II. Nederl. Akad. Wetensch. Proc. 51, (1948) 396-404, 470-481. = Indagationes Math. 10 (1948), 142-150, 164-175. | Zbl | MR
,