Voir la notice de l'article provenant de la source Numdam
We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large ; it is based on Shanks's baby-step-giant-step strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic polynomial time algorithm was impractical in its original form. We discuss several practical improvements by Atkin and Elkies.
@article{JTNB_1995__7_1_219_0, author = {Schoof, Ren\'e}, title = {Counting points on elliptic curves over finite fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {219--254}, publisher = {Universit\'e Bordeaux I}, volume = {7}, number = {1}, year = {1995}, mrnumber = {1413578}, zbl = {0852.11073}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1995__7_1_219_0/} }
TY - JOUR AU - Schoof, René TI - Counting points on elliptic curves over finite fields JO - Journal de théorie des nombres de Bordeaux PY - 1995 SP - 219 EP - 254 VL - 7 IS - 1 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1995__7_1_219_0/ LA - en ID - JTNB_1995__7_1_219_0 ER -
Schoof, René. Counting points on elliptic curves over finite fields. Journal de théorie des nombres de Bordeaux, Tome 7 (1995) no. 1, pp. 219-254. http://geodesic.mathdoc.fr/item/JTNB_1995__7_1_219_0/