Simulation of single-pixel camera method application for mapping the spatial layout of objects in lidar technologies
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 377-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents the simulation results demonstrating the successful application of single-pixel imaging for the reconstruction of three-dimensional object images, in combination with LIDAR technologies. Specifically, the integration of pulsed radiation-based Time of Flight (ToF) and Frequency Modulated Continuous Wave (FMCW) LIDAR methods is explored. In the case of ToF, the simulations reveal enhanced accuracy in distinguishing distances between objects that are smaller than the distance light travels in half the duration of the scanning pulse. These findings highlight the potential of single-pixel imaging in advanced 3D visualization and distance measurement applications.
Keywords: single pixel camera, time of flight LIDAR, frequency-modulated continious vawe LIDAR.
Mots-clés : 3d visualisation
@article{JSFU_2025_18_3_a9,
     author = {Anastasiia K. Lappo-Danilevskaia and Azat O. Ismagilov and Aleksei A. Kalinichev and Anton N. Tsypkin},
     title = {Simulation of single-pixel camera method application for mapping the spatial layout of objects in lidar technologies},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {377--386},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a9/}
}
TY  - JOUR
AU  - Anastasiia K. Lappo-Danilevskaia
AU  - Azat O. Ismagilov
AU  - Aleksei A. Kalinichev
AU  - Anton N. Tsypkin
TI  - Simulation of single-pixel camera method application for mapping the spatial layout of objects in lidar technologies
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 377
EP  - 386
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a9/
LA  - en
ID  - JSFU_2025_18_3_a9
ER  - 
%0 Journal Article
%A Anastasiia K. Lappo-Danilevskaia
%A Azat O. Ismagilov
%A Aleksei A. Kalinichev
%A Anton N. Tsypkin
%T Simulation of single-pixel camera method application for mapping the spatial layout of objects in lidar technologies
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 377-386
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a9/
%G en
%F JSFU_2025_18_3_a9
Anastasiia K. Lappo-Danilevskaia; Azat O. Ismagilov; Aleksei A. Kalinichev; Anton N. Tsypkin. Simulation of single-pixel camera method application for mapping the spatial layout of objects in lidar technologies. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 377-386. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a9/

[1] N.Jonnavithula, Y.Lyu, Z.Zhang, LiDAR Odometry Methodologies for Autonomous Driving: A Survey, 2021, arXiv: 2109.06120

[2] G.Zhao, M.Lian, Y.Li, Z.Duan, S.Zhu, L.Mei, S.Svanberg, “Mobile Lidar System for Environmental Monitoring”, Applied Optics, 56:5 (2017), 1506–1516 | DOI

[3] F.Amzajerdian, V.E.Roback, A.Bulyshev, P.F.Brewster, G.D.Hines, “Imaging Flash Lidar for Autonomous Safe Landing and Spacecraft Proximity Operation”, AIAA SPACE 2016, 2016, 5591 | DOI

[4] T.Olvera Hale, Mapping and Navigation in an Unknown Environment Using LiDAR for Mobile Service Robots, 2020

[5] D.Lee, M.Jung, W.Yang, A.Kim, “LiDAR Odometry Survey: Recent Advancements and Remaining Challenges”, Intelligent Service Robotics, 17 (2024), 1–24 | DOI

[6] B Behroozpour, P.A.Sandborn, M.C.Wu, B.E.Boser, “Lidar system architectures and circuits”, IEEE Commun. Mag., 55 (2017), 135–142 | DOI

[7] W.L.Chan, K.Charan, D.Takhar, K.F.Kelly, R.G.Baraniuk, D.M.Mittleman, “A Single-Pixel Terahertz Imaging System Based on Compressed Sensing”, Applied Physics Letters, 93:12 (2008) | DOI

[8] L.Leibov, A.Ismagilov, V.Zalipaev, B.Nasedkin, Y.Grachev, N.Petrov, A.Tcypkin, “Speckle Patterns Formed by Broadband Terahertz Radiation and Their Applications for Ghost Imaging”, Scientific Reports, 11:1 (2021), 20071 | DOI

[9] J.Greenberg, K.Krishnamurthy, D.Brady, “Compressive Single-Pixel Snapshot X-Ray Diffraction Imaging”, Optics Letters, 39:1 (2014), 111–114 | DOI

[10] J.Ma, “Single-Pixel Remote Sensing”, IEEE Geoscience and Remote Sensing Letters, 6:2 (2009), 199–203 | DOI

[11] V.Studer, J.Bobin, M.Chahid, H.S.Mousavi, E.Candes, M.Dahan, “Compressive Fluorescence Microscopy for Biological and Hyperspectral Imaging”, Proceedings of the National Academy of Sciences, 109:26 (2012), E1679–E1687 | DOI

[12] P.A.Morris, R.S.Aspden, J.E.C.Bell, R.W.Boyd, M.J.Padgett, “Imaging with a Small Number of Photons”, Nature Communications, 6:1 (2015), 5913 | DOI | MR

[13] J Cheng, “Ghost Imaging through Turbulent Atmosphere”, Optics Express, 17:10 (2009), 7916–7921 | DOI

[14] Y.Bromberg, O.Katz, Y.Silberberg, “Ghost Imaging with a Single Detector”, Phys. Rev. A, 79:5 (2009), 053840 | DOI | MR

[15] Z.Yang, Y.-M.Bai, K.-X.Huang, Y.-X.Liu, J.Liu, D. Ruan,J.-L.Li, “Single-Pixel Full-Field Simultaneous Spatial and Velocity Imaging”, Optics and Lasers in Engineering, 169 (2023), 107691 | DOI

[16] W.Zhang, Z.Cao, H.Zhang, H.Xie, Z.Ye, L.Xu, “Distribution Retrieval of Both Depth and Reflectivity in 3-D Objects via Using Modulated Single Pixel Imaging”, IEEE Transactions on Instrumentation and Measurement, 72 (2022), 1–11 | DOI

[17] X.Li, Y.Hu, Y.Jie, C.Zhao, Z.Zhang, “Dual-Frequency Lidar for Compressed Sensing 3D Imaging Based on All-Phase Fast Fourier Transform”, Journal of Optics and Photonics Research, 1 (2023) | DOI

[18] G.M.Gibson, S.D.Johnson, M.J.Padgett, “Single-Pixel Imaging 12 Years On: A Review”, Optics Express, 28:19 (2020), 28190–28208 | DOI

[19] W.Gong, “Performance comparison of computational ghost imaging versus single-pixel camera in light disturbance environment”, Optics $\$ Laser Technology, 152 (2022), 108140 | DOI

[20] B.Liu, P.Song, Y.Zhai, X.Wang, W.Zhang, “Modeling and Simulations of a Three-Dimensional Ghost Imaging Method with Differential Correlation Sampling”, Optics Express, 29:23 (2021), 38879–38893 | DOI

[21] J.D.Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB, SPIE, 2010 | MR

[22] B.Sun, M.Edgar, R.Bowman, L.Vittert, S.Welsh, A.Bowman, M.Padgett, “3D Computational Imaging with Single-Pixel Detectors”, Science (New York, N.Y.), 340 (2013), 844–847 | DOI

[23] Z.Zhang, X.Ma, J.Zhong, “Single-Pixel Imaging by Means of Fourier Spectrum Acquisition”, Nature Communications, 6:1 (2015), 6225 | DOI

[24] W.-K.Yu, “Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort”, Sensors, 19:19 (2019), 4122 | DOI

[25] M.-J.Sun, L.-T.Meng, M.P.Edgar, M.J.Padgett, N.Radwell, “A Russian Dolls Ordering of the Hadamard Basis for Compressive Single-Pixel Imaging”, Scientific Reports, 7:1 (2017), 3464 | DOI

[26] X.Yang, Y.Zhang, C.Yang, L.Xu, Q.Wang, Y.Zhao, “Heterodyne 3D Ghost Imaging”, Optics Communications, 368 (2016), 1–6 | DOI

[27] D.J.Lum, S.H.Knarr, J.C.Howell, “Frequency-Modulated Continuous-Wave LiDAR Compressive Depth-Mapping”, Optics Express, 26:12 (2018), 15420–15435 | DOI