The investigation of Gaussian beams and optical vortices diffraction in the near zone of subwavelength optical elements with variable height
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 358-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite difference time domain method was used to simulate the propagation of Gaussian beams and optical vortices with circular, radial, azimuthal polarization on subwavelength ring gratings with standard and GRIN substrates in this paper. The height of individual zones of the optical elements relief was varied. It was shown that it is possible to select the beam type and element parameters in such a way that a long light needle (up to $8.2\lambda$) and a narrow focal spot are formed on the optical axis (up to $0.33\lambda$).
Keywords: Gaussian beams, optical vortices, GRIN, subwavelength ring gratings, Meep.
Mots-clés : FDTD
@article{JSFU_2025_18_3_a7,
     author = {Dmitry A. Savelyev},
     title = {The investigation of {Gaussian} beams and optical vortices diffraction in the near zone of subwavelength optical elements with variable height},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {358--370},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a7/}
}
TY  - JOUR
AU  - Dmitry A. Savelyev
TI  - The investigation of Gaussian beams and optical vortices diffraction in the near zone of subwavelength optical elements with variable height
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 358
EP  - 370
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a7/
LA  - en
ID  - JSFU_2025_18_3_a7
ER  - 
%0 Journal Article
%A Dmitry A. Savelyev
%T The investigation of Gaussian beams and optical vortices diffraction in the near zone of subwavelength optical elements with variable height
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 358-370
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a7/
%G en
%F JSFU_2025_18_3_a7
Dmitry A. Savelyev. The investigation of Gaussian beams and optical vortices diffraction in the near zone of subwavelength optical elements with variable height. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 358-370. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a7/

[1] Y.Kang, J.Wang, Y.Zhao, X.Zhao, H.Tao, Y.Xu, “High refractive index GRIN lens for IR optics”, Materials, 16:7 (2023), 2566 | DOI

[2] K.A.Richardson et al., “Advances in infrared gradient refractive index (GRIN) materials: a review”, Optical Engineering, 59:11 (2020), 112602 | DOI

[3] Z.Zhang et al., “Refractive index measurement deflectometry for measuring gradient refractive index lens”, Optics Express, 32:7 (2024), 12620–12635 | DOI

[4] D.H.Lippman et al., “Freeform gradient-index media: a new frontier in freeform optics”, Optics Express, 29:22 (2021), 36997–37012 | DOI

[5] J.M.Luque-Gonzalez et al., “An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials”, Laser $\$ Photonics Reviews, 13:11 (2019), 1900172 | DOI

[6] C.Guo, T.Urner, S.Jia, “3D light-field endoscopic imaging using a GRIN lens array”, Applied Physics Letters, 116:10 (2020), 101105 | DOI

[7] G.I.Greisukh, I.Y.Levin, E.G.Ezhov, “Ultra-high-aperture infrared triplet with a GRIN lens: modeling stages of composite gradient-index material and potential possibilities of the optical system”, Journal of Optical Technology, 91:3 (2024), 137–141 | DOI

[8] P.Lalanne, P.Chavel, “Metalenses at visible wavelengths: past, present, perspectives”, Laser Photonics Reviews, 11:3 (2017), 1600295 | DOI

[9] J.E.Gomez-Correa et al., “Symmetric gradient-index media reconstruction”, Optics Express, 31:18 (2023), 29196–29212 | DOI

[10] J.E.Gomez-Correa, “Geometrical-light-propagation in non-normalized symmetric gradient-index media”, Optics Express, 30:19 (2022), 33896–33910 | DOI

[11] L.Wei, G.Li, M.Song, C.H.Wang, W.Zhang, “Determination of gradient index based on laser beam deflection by stochastic particle swarm optimization”, Applied Physics B, 127:9 (2021), 131 | DOI

[12] Y.F.Chien et al., “Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging”, Biomedical Optics Express, 12:1 (2021), 162–172 | DOI

[13] G.M.Williams, J. Paul Harmon, “Dispersion controlled nanocomposite gradient index lenses”, Optics Continuum, 2:2 (2023), 456–472 | DOI

[14] D.A.Savelyev, A.V.Ustinov, S.N.Khonina, N.L.Kazanskiy, “Layered lens with a linear dependence of the refractive index change”, Proceedings of SPIE, 9807 (2016), 203–209 | DOI

[15] A.K.Baghel, S.S.Kulkarni, S.K.Nayak, “Far-field wireless power transfer using GRIN lens metamaterial at GHz frequency”, IEEE Microwave and Wireless Components Letters, 29:6 (2019), 424–426 | DOI

[16] D.A.Savelyev, S.V.Karpeev, “Development of 3D Microstructures for the Formation of a Set of Optical Traps on the Optical Axis”, Photonics, 10:2 (2023), 117 | DOI | MR

[17] H.Ohno, “Symplectic ray tracing based on Hamiltonian optics in gradient-index media”, JOSA A, 37:3 (2020), 411–416 | DOI | MR

[18] H.Ohno, T.Usui, “Neural network gradient-index mapping”, OSA Continuum, 4:10 (2021), 2543–2551 | DOI

[19] R.Azizkhani, D.Hebri, S.Rasouli, “Gaussian beam diffraction from radial structures: detailed study on the diffraction from sinusoidal amplitude radial gratings”, Optics Express, 31:13 (2023), 20665–20682 | DOI

[20] A.P.Porfirev et al., “Phase singularities and optical vortices in photonics”, Phys. Usp., 192:8 (2022), 841–866 | DOI

[21] D.Savelyev, N.Kazanskiy, “Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition”, Sensors, 21:6 (2021), 1973 | DOI

[22] S.N.Khonina, S.V.Karpeev, M.A.Butt, “Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders”, Sensors, 21:9 (2021), 2988 | DOI

[23] Y.Lian et al., “OAM beam generation in space and its applications: A review”, Optics and Lasers in Engineering, 151 (2022), 106923 | DOI

[24] D.A.Savelyev, “Features of a Gaussian beam near-field diffraction upon variations in the relief height of subwavelength silicon optical elements”, Computer Optics, 47:6 (2023), 938–947 (in Russian) | DOI

[25] V.V.Kotlyar et al., “Spin-Orbital Transformation in a Tight Focus of an Optical Vortex with Circular Polarization”, Applied Sciences, 13:14 (2023), 8361 | DOI

[26] S.N.Khonina, A.V.Ustinov, S.G.Volotovskiy, N.A.Ivliev, V.V.Podlipnov, “Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymer films”, Applied Optics, 59:29 (2020), 9185–9194 | DOI

[27] J.Baltrukonis, O.Ulcinas, S.Orlov, V.Jukna, “High-order vector bessel-gauss beams for laser micromachining of transparent materials”, Physical Review Applied, 16:3 (2021), 034001 | DOI

[28] B.Wang et al., “Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum”, Nature Photonics, 14:10 (2020), 623–628 | DOI

[29] A.Brimis, K.G.Makris, D.G.Papazoglou, “Optical vortices shape optical tornados”, Optics Express, 31:17 (2023), 27582–27593 | DOI

[30] D.A.Savelyev, “The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon”, Computer Optics, 45:2 (2021), 214–221 (in Russian) | DOI

[31] J.Adams, I.Agha, A.Chong, “Spatiotemporal optical vortex reconnections of multi-vortices”, Scientific Reports, 14:1 (2024), 5483 | DOI

[32] D.Savelyev, S.Degtyarev, “Features of the Optical Vortices Diffraction on Silicon Ring Gratings”, Optical Memory and Neural Networks, 31:1 (2022), 55–66 | DOI

[33] K.Zhang, Y.Wang, Y.Yuan, S.N.Burokur, “A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces”, Applied Sciences, 10:3 (2020), 1015 | DOI

[34] D.A.Savelyev, “Peculiarities of focusing circularly and radially polarized super-Gaussian beams using ring gratings with varying relief height”, Computer Optics, 46:4 (2022), 537–546 (Russian) | DOI

[35] M.Dong, C.Zhao, Y.Cai, Y.Yang, “Partially coherent vortex beams: Fundamentals and applications”, Science China Physics, Mechanics $\$ Astronomy, 64:2 (2021), 224201 | DOI

[36] D.L.Andrews, “Symmetry and quantum features in optical vortices”, Symmetry, 13:8 (2021), 1368 | DOI

[37] N.Jimenez, V.Romero-Garcia, L.M.Garcia-Raffi, F.Camarena, K.Staliunas, “Sharp acoustic vortex focusing by Fresnel-spiral zone plates”, Applied Physics Letters, 112:20 (2018), 204101 | DOI

[38] E.V.Barshak et al., “Robust higher-order optical vortices for information transmission in twisted anisotropic optical fibers”, Journal of Optics, 23:3 (2021), 035603 | DOI

[39] Y.Shen et al., “Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities”, Light: Science $\$ Applications, 8:1 (2019), 1–29 | DOI

[40] D.A.Savelyev, “The Features of the Optical Traps Formation Using Silicon Ring Gratings with Variable Height”, Photonics, 10:11 (2023), 1264 | DOI

[41] J.Bayat, F.Hajizadeh, A.M. Khazaei, S.Rasouli, “Gear-like rotatable optical trapping with radial carpet beams”, Sci. Rep., 10:1 (2020), 11721 | DOI

[42] A.A.Sirenko et al., “Terahertz vortex beam as a spec-troscopic probe of magnetic excitations”, Physical Review Letters, 122:23 (2019), 237401 | DOI

[43] S.N.Khonina, M.A.Butt, N.L.Kazanskiy, “A Review on Reconfigurable Metalenses Revolutionizing Flat Optics”, Adv. Optical Mater., 12:4 (2024), 2302794 | DOI

[44] S.Lightman, G.Hurvitz, R.Gvishi, A.Arie, “Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing”, Optica, 4:6 (2017), 605–610 | DOI

[45] S.Yu, “Potentials and challenges of using orbital angular momentum communications in optical interconnects”, Optics Express, 23:3 (2015), 3075–3087 | DOI

[46] S.N.Khonina, N.L.Kazanskiy, P.A.Khorin, M.A.Butt, “Modern types of axicons: new functions and applications”, Sensors, 21:19 (2021), 6690 | DOI

[47] Z.Yang et al., “Design of bottle beam based on dual-beam for trapping particles in air”, Applied Optics, 58:10 (2019), 2471 | DOI

[48] D.A.Savelyev, S.N.Khonina, “Characteristics of sharp focusing of vortex Laguerre-Gaussian beams”, Computer Optics, 39:5 (2015), 654–662 (in Russian) | DOI | MR

[49] C.Shi et al., “Sub-wavelength longitudinally polarized optical needle arrays generated with tightly focused radially polarized Gaussian beam”, Optics Communications, 505 (2022), 127506 | DOI

[50] D.A.Savelyev, “The Comparison of Laser Radiation Focusing by Diffractive Axicons and Annular Gratings with Variable Height Using High-performance Computer Systems”, Proceedings of IEEE - 2021 Photonics $\$ Electromagnetics Research Symposium (PIERS), 2021, 2709–2716 | DOI

[51] N.L.Kazanskiy, S.N.Khonina, “Nonparaxial effects in lensacon optical systems”, Optoelectronics, Instrumentation and Data Processing, 53:5 (2017), 484–493 | DOI

[52] M.Rani, J.Kashyap, U.Singh, A.Kapoor, “Optimisation of dielectric spacer layer thickness in Ag nanospheres/ITO/c-Si structure for plasmonic solar cells using FDTD simulation”, Materials Technology, 37:10 (2022), 1320–1328 | DOI

[53] M.S.Soskin, M.V.Vasnetsov, “Singular optics”, Progress in optics, 42 (2001), 219–276 | DOI

[54] A.V.Chernykh, N.V.Petrov, “Optical vortex trajectory of the edge-diffracted single-charged Laguerre-Gaussian beam”, Optics and Lasers in Engineering, 139 (2021), 106504 | DOI

[55] V.A.Soifer et al., “Computer Design of Diffractive Optics”, Woodhead Publishing Series in Electronic and Optical Materials, 50 (2013) | DOI