Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_3_a6, author = {Elina A. Izbasarova and Almaz R. Gazizov}, title = {Near-field interaction effects in colloidal {Au-CeYTbF}$_{3}$ nanoclusters in plasmonic immunoanalysis}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {347--357}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/} }
TY - JOUR AU - Elina A. Izbasarova AU - Almaz R. Gazizov TI - Near-field interaction effects in colloidal Au-CeYTbF$_{3}$ nanoclusters in plasmonic immunoanalysis JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 347 EP - 357 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/ LA - en ID - JSFU_2025_18_3_a6 ER -
%0 Journal Article %A Elina A. Izbasarova %A Almaz R. Gazizov %T Near-field interaction effects in colloidal Au-CeYTbF$_{3}$ nanoclusters in plasmonic immunoanalysis %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 347-357 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/ %G en %F JSFU_2025_18_3_a6
Elina A. Izbasarova; Almaz R. Gazizov. Near-field interaction effects in colloidal Au-CeYTbF$_{3}$ nanoclusters in plasmonic immunoanalysis. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 347-357. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/
[1] K.P.Carter, “Fluorescent sensors for measuring metal ions in living systems”, Chem. Rev., 114 (2014), 4564–4601 | DOI
[2] Y.Han, “Inorganic nanoparticles as donors in resonance energy transfer for solid-phase bioassays and biosensors”, Langmuir, 33:45 (2017), 12839–12858 | DOI
[3] J.Beik, “Gold nanoparticles in combinatorial cancer therapy strategies”, Coord. Chem. Rev., 387 (2019), 299–324 | DOI
[4] Y.-W.Lin, “Gold nanoparticle probes for the detection of mercury, lead and copper ions”, Analyst, 136:5 (2011), 863–871 | DOI
[5] X.Huang, “Gold nanoparticle based platforms for circulating cancer marker detection”, Nanotheranostics, 1:1 (2017), 80 | DOI
[6] K.Saha, “Gold nanoparticles in chemical and biological sensing”, Chem. Rev., 112:5 (2012), 2739–2779 | DOI
[7] W.Zhou, “Gold nanoparticles for in vitro diagnostics”, Chem. Rev., 115:19 (2015), 10575–10636 | DOI
[8] M.Tian, “Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level”, Analyst, 145:14 (2020), 4737–4752 | DOI
[9] S.Lee, “Plasmonic nanostructure-based bioimaging and detection techniques at the single-cell level”, Trends Analyt. Chem., 117 (2019), 58–68 | DOI
[10] I.S.Che Sulaiman, “A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles”, Mikrochim. Acta, 187 (2020), 1–22 | DOI
[11] D.Mendez-Gonzalez, “Control of upconversion luminescence by gold nanoparticle size: from quenching to enhancement”, Nanoscale, 11:29 (2019), 13832–13844 | DOI
[12] M.Kushlyk, “Enhancement of the YAG:Ce,Yb down-conversion emission by plasmon resonance in Ag nanoparticles”, J. Alloys Compd., 804 (2019), 202–212 | DOI
[13] E.M.Purcell, Spontaneous emission probabilities at radio frequencies, Springer, 1995, 839 pp.
[14] T.Förster, “Zwischenmolekulare energiewanderung und fluoreszenz”, Ann. Phys., 437:1-2 (1948), 55–75 | DOI
[15] J.Fan, “Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing”, Chem. Soc. Rev., 42:1 (2013), 29–43 | DOI
[16] D.Lu, “Plasmon enhancement mechanism for the upconversion processes in NaYF$_{4}$:Yb$^{3+}$,Er$^{3+}$ nanoparticles: Maxwell versus Förster”, ACS Nano, 8:8 (2014), 7780–7792 | DOI
[17] Q.C.Sun, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals”, Nano Lett., 14:1 (2014), 101–106 | DOI
[18] M.Saboktakin, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays”, ACS Nano, 7:8 (2013), 7186–7192 | DOI
[19] N.J.Greybush, “Plasmon-enhanced upconversion luminescence in single nanophosphor–nanorod heterodimers formed through template-assisted self-assembly”, ACS Nano, 8:9 (2014), 9482–9491 | DOI
[20] G.Yi, “Systematic investigation of the wavelength-dependent upconversion enhancement induced by single plasmonic nanoparticles”, J. Phys. Chem. C, 122:24 (2018), 13047–13053 | DOI
[21] Z.Zhu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection”, ACS Appl. Bio Mater., 1:1 (2018), 118–124 | DOI
[22] P.Moutet, “Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography”, Nanoscale, 7:5 (2015), 2009–2022 | DOI
[23] S.Z.Zhang, “Reversible luminescence switching of NaYF$_{4}$:Yb,Er nanoparticles with controlled assembly of gold nanoparticles”, Chem. Comm., 18:18 (2009), 2547–2549 | DOI
[24] Q.Wu, “An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk”, Talanta, 136 (2015), 47–53 | DOI
[25] K.Saha, “Modification of NaYF$_{4}$:Yb,Er@SiO$_{2}$ nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions”, J. Phys. Chem. C, 115:8 (2011), 3291–3296 | DOI
[26] M.S.Pudovkin, “CeF$_3$-TbF$_3$-YF$_3$ nanoparticles for ratiometric temperature sensing”, Opt. Mater., 148 (2024), 114831 | DOI
[27] E.A.Seregina, “Spectral and luminescent characteristics of trivalent lanthanide ions in a POCl$_{3}$-SnCl$_{4}$ inorganic solvent”, Opt. Spectrosc., 116:3 (2014), 438–453 | DOI
[28] I.A.Terra, “Judd-Ofelt analysis of Tb$^{3+}$ and upconversion study in Yb$^{3+}$-Tb$^{3+}$ co-doped calibo glasses”, Chem. Rev., 43 (2020), 188–193 | DOI
[29] J.R.Ramble, Handbook of Chemistry and Physics, CRC Press ed, 2021
[30] L.R.Ip, “Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment”, Oncotarget, 6:12 (2015), 10548 | DOI