Near-field interaction effects in colloidal Au-CeYTbF$_{3}$ nanoclusters in plasmonic immunoanalysis
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 347-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the effects of plasmonic enhancement of spontaneous emission in colloidal nanoclusters consisting of Au nanoparticles and CeYTbF$_{3}$ phosphor. Based on numerical simulation of various configurations of Au nanoparticles coated with polyethyleneimine, we analyzed the dependence of plasmonic resonances position on their number and distribution. The results showed that optimal nanoparticle configurations significantly enhance luminescence in the desired region of the visible spectrum, which opens up new possibilities for the development of highly sensitive nanosensors. At the same time, nanoclusters located on a Au substrate demonstrate a lower luminescence enhancement coefficient, while having a more inhomogeneous distribution of the optical near field. The results obtained reveal the dependence of the luminescence enhancement coefficient on the spatial distribution and coordination number of plasmonic nanoparticles in a nanocluster. This study contributes to the understanding of plasmonic interaction mechanisms and its applications in optical immunoassay and biomedical technologies.
Keywords: Purcell effect, Förster effect, FDTD modeling
Mots-clés : plasmonic nanoparticles, luminescent nanoparticles.
@article{JSFU_2025_18_3_a6,
     author = {Elina A. Izbasarova and Almaz R. Gazizov},
     title = {Near-field interaction effects in colloidal  {Au-CeYTbF}$_{3}$ nanoclusters in plasmonic immunoanalysis},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {347--357},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/}
}
TY  - JOUR
AU  - Elina A. Izbasarova
AU  - Almaz R. Gazizov
TI  - Near-field interaction effects in colloidal  Au-CeYTbF$_{3}$ nanoclusters in plasmonic immunoanalysis
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 347
EP  - 357
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/
LA  - en
ID  - JSFU_2025_18_3_a6
ER  - 
%0 Journal Article
%A Elina A. Izbasarova
%A Almaz R. Gazizov
%T Near-field interaction effects in colloidal  Au-CeYTbF$_{3}$ nanoclusters in plasmonic immunoanalysis
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 347-357
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/
%G en
%F JSFU_2025_18_3_a6
Elina A. Izbasarova; Almaz R. Gazizov. Near-field interaction effects in colloidal  Au-CeYTbF$_{3}$ nanoclusters in plasmonic immunoanalysis. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 347-357. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a6/

[1] K.P.Carter, “Fluorescent sensors for measuring metal ions in living systems”, Chem. Rev., 114 (2014), 4564–4601 | DOI

[2] Y.Han, “Inorganic nanoparticles as donors in resonance energy transfer for solid-phase bioassays and biosensors”, Langmuir, 33:45 (2017), 12839–12858 | DOI

[3] J.Beik, “Gold nanoparticles in combinatorial cancer therapy strategies”, Coord. Chem. Rev., 387 (2019), 299–324 | DOI

[4] Y.-W.Lin, “Gold nanoparticle probes for the detection of mercury, lead and copper ions”, Analyst, 136:5 (2011), 863–871 | DOI

[5] X.Huang, “Gold nanoparticle based platforms for circulating cancer marker detection”, Nanotheranostics, 1:1 (2017), 80 | DOI

[6] K.Saha, “Gold nanoparticles in chemical and biological sensing”, Chem. Rev., 112:5 (2012), 2739–2779 | DOI

[7] W.Zhou, “Gold nanoparticles for in vitro diagnostics”, Chem. Rev., 115:19 (2015), 10575–10636 | DOI

[8] M.Tian, “Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level”, Analyst, 145:14 (2020), 4737–4752 | DOI

[9] S.Lee, “Plasmonic nanostructure-based bioimaging and detection techniques at the single-cell level”, Trends Analyt. Chem., 117 (2019), 58–68 | DOI

[10] I.S.Che Sulaiman, “A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles”, Mikrochim. Acta, 187 (2020), 1–22 | DOI

[11] D.Mendez-Gonzalez, “Control of upconversion luminescence by gold nanoparticle size: from quenching to enhancement”, Nanoscale, 11:29 (2019), 13832–13844 | DOI

[12] M.Kushlyk, “Enhancement of the YAG:Ce,Yb down-conversion emission by plasmon resonance in Ag nanoparticles”, J. Alloys Compd., 804 (2019), 202–212 | DOI

[13] E.M.Purcell, Spontaneous emission probabilities at radio frequencies, Springer, 1995, 839 pp.

[14] T.Förster, “Zwischenmolekulare energiewanderung und fluoreszenz”, Ann. Phys., 437:1-2 (1948), 55–75 | DOI

[15] J.Fan, “Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing”, Chem. Soc. Rev., 42:1 (2013), 29–43 | DOI

[16] D.Lu, “Plasmon enhancement mechanism for the upconversion processes in NaYF$_{4}$:Yb$^{3+}$,Er$^{3+}$ nanoparticles: Maxwell versus Förster”, ACS Nano, 8:8 (2014), 7780–7792 | DOI

[17] Q.C.Sun, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals”, Nano Lett., 14:1 (2014), 101–106 | DOI

[18] M.Saboktakin, “Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays”, ACS Nano, 7:8 (2013), 7186–7192 | DOI

[19] N.J.Greybush, “Plasmon-enhanced upconversion luminescence in single nanophosphor–nanorod heterodimers formed through template-assisted self-assembly”, ACS Nano, 8:9 (2014), 9482–9491 | DOI

[20] G.Yi, “Systematic investigation of the wavelength-dependent upconversion enhancement induced by single plasmonic nanoparticles”, J. Phys. Chem. C, 122:24 (2018), 13047–13053 | DOI

[21] Z.Zhu, “Plasmon-enhanced fluorescence in coupled nanostructures and applications in DNA detection”, ACS Appl. Bio Mater., 1:1 (2018), 118–124 | DOI

[22] P.Moutet, “Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography”, Nanoscale, 7:5 (2015), 2009–2022 | DOI

[23] S.Z.Zhang, “Reversible luminescence switching of NaYF$_{4}$:Yb,Er nanoparticles with controlled assembly of gold nanoparticles”, Chem. Comm., 18:18 (2009), 2547–2549 | DOI

[24] Q.Wu, “An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk”, Talanta, 136 (2015), 47–53 | DOI

[25] K.Saha, “Modification of NaYF$_{4}$:Yb,Er@SiO$_{2}$ nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions”, J. Phys. Chem. C, 115:8 (2011), 3291–3296 | DOI

[26] M.S.Pudovkin, “CeF$_3$-TbF$_3$-YF$_3$ nanoparticles for ratiometric temperature sensing”, Opt. Mater., 148 (2024), 114831 | DOI

[27] E.A.Seregina, “Spectral and luminescent characteristics of trivalent lanthanide ions in a POCl$_{3}$-SnCl$_{4}$ inorganic solvent”, Opt. Spectrosc., 116:3 (2014), 438–453 | DOI

[28] I.A.Terra, “Judd-Ofelt analysis of Tb$^{3+}$ and upconversion study in Yb$^{3+}$-Tb$^{3+}$ co-doped calibo glasses”, Chem. Rev., 43 (2020), 188–193 | DOI

[29] J.R.Ramble, Handbook of Chemistry and Physics, CRC Press ed, 2021

[30] L.R.Ip, “Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment”, Oncotarget, 6:12 (2015), 10548 | DOI