Modelling of a sandwich plate cross-section with different moduli of the material under cylindrical loads
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 320-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of three-layer sandwich plate consisting of two layers of composite material connected by an elastic isotropic layer is considered in the paper. Composite layers with different tensile and compression moduli of elasticity are described as an orthotropic material reinforced with parallel carbon fibres. Constitutive equations of the model are based on the generalized rheological method. The energy functional is constructed with the use of the Lagrange variational method which is minimized using the initial stress method and the finite element method. The results of a series of computational experiments are presented wherein the stress-strain state of a vertical section of a plate under the action of cylindrical load is calculated.
Keywords: composite material, multi-modular theory of elasticity, generalized rheological method, finite element method.
Mots-clés : composite plate
@article{JSFU_2025_18_3_a3,
     author = {Igor E. Petrakov},
     title = {Modelling of a sandwich plate cross-section with different moduli of the material under cylindrical loads},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {320--330},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a3/}
}
TY  - JOUR
AU  - Igor E. Petrakov
TI  - Modelling of a sandwich plate cross-section with different moduli of the material under cylindrical loads
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 320
EP  - 330
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a3/
LA  - en
ID  - JSFU_2025_18_3_a3
ER  - 
%0 Journal Article
%A Igor E. Petrakov
%T Modelling of a sandwich plate cross-section with different moduli of the material under cylindrical loads
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 320-330
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a3/
%G en
%F JSFU_2025_18_3_a3
Igor E. Petrakov. Modelling of a sandwich plate cross-section with different moduli of the material under cylindrical loads. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 320-330. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a3/

[1] TFujii, M.Zako, Fracture mechanics of composite materials, Mir, M., 1982

[2] D.Lubin, Handbook of Composite Materials, Mashinostroenie, M., 1988

[3] F.L.Matthews, R.D.Rawlings, Composite materials: Engineering and science, CRC Press, Woodhead Publishing, Cambridge, 1999

[4] A.A.Bataev, V.A.Bataev, Composite materials: structure, production, application, NGTU, Novosibirsk, 2002

[5] I.M.Bulanov, V.V.Vorobej, Technology of rocket and aerospace structures made of composite materials, MGTU, M., 1998

[6] B.Vijaya Ramnath, K.Alagarraja, C.Elanchezhian, “Review on Sandwich Composite and their Applications”, Materials Today: Proceedings, 16:2 (2019), 859–864 | DOI

[7] S.A.Ambartsumyan, Heteromodular Elasticity Theory, Nauka, M., 1982

[8] O.Sadovskaya, V.Sadovskii, Mathematical modeling in problems of mechanics of granular media, Fizmatlit, M. (in Russian) | MR

[9] O.Sadovskaya, V.Sadovskii, Mathematical Modeling in Mechanics of Granular Materials, Springer, Heidelberg–New York–Dordrecht–London, 2012 | MR

[10] V.M.Sadovskii, “Thermodynamic Consistency and Mathematical Well-Posedness in the Theory of Elastoplastic, Granular, and Porous Materials”, Computational Mathematics and Mathematical Physics, 60:4 (2020), 738–751 | DOI | MR

[11] B.D.Annin, V.M.Sadovskii, I.E.Petrakov, A.Yu.Vlasov, “Strong Bending of a Beam from a Fibrous Composite, Differently Resistant to Tension and Compression”, Journal of Siberian Federal Universit. Mathematics and Physics, 12:5 (2019), 533–542 | DOI | MR

[12] V.M.Sadovskii, O.V.Sadovskaya, I.E.Petrakov, “On the theory of constitutive equations for composites with different resistance in compression and tension”, Composite Structures, 268 (2021), 113921 | DOI