Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_3_a2, author = {Aleksandra G. Golubovskaya and Tamara S. Kharlamova and Valery A. Svetlichnyi}, title = {Solid-phase synthesis and photocatalytic properties {of~Bi}$_2${SiO}$_5${/Bi}$_{12}${SiO}$_{20}$ heterostructures}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {309--319}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/} }
TY - JOUR AU - Aleksandra G. Golubovskaya AU - Tamara S. Kharlamova AU - Valery A. Svetlichnyi TI - Solid-phase synthesis and photocatalytic properties of~Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterostructures JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 309 EP - 319 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/ LA - en ID - JSFU_2025_18_3_a2 ER -
%0 Journal Article %A Aleksandra G. Golubovskaya %A Tamara S. Kharlamova %A Valery A. Svetlichnyi %T Solid-phase synthesis and photocatalytic properties of~Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterostructures %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 309-319 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/ %G en %F JSFU_2025_18_3_a2
Aleksandra G. Golubovskaya; Tamara S. Kharlamova; Valery A. Svetlichnyi. Solid-phase synthesis and photocatalytic properties of~Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterostructures. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 309-319. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/
[1] B.Abhishek, A.Jayarama, et. all., “Challenges in photocatalytic hydrogen evolution: Importance of photocatalysts and photocatalytic reactors”, Int. J. Hydrogen Energy., 81 (2024), 1442–1466 | DOI
[2] Z.Lin, R.C.Shao, K.Y.Xin, L.Teck-Peng, “From biomass to fuel: Advancing biomass upcycling through photocatalytic innovation”, Mater. Today Chem., 38 (2024), 102091 | DOI
[3] P.Qiangsheng, W.Yuanfeng, et. all., “A review on the recent development of bismuth-based catalysts for CO$_2$ photoreduction”, J. Mol. Struct., 1294 (2023), 136404 | DOI
[4] A.Krishnan, A.Swarnalal, D.Das, M.Krishnan, V.S. Saji, S.M.A. Shibli, “A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants”, J. Environ. Sci., 139 (2024), 389–417 | DOI
[5] T.Butburee, P.Chakthranont, C.Phawa, K.Faungnawakij, “Beyond Artificial Photosynthesis: Prospects on Photobiorefinery”, ChemCatChem, 12 (2020), 1873–1890 | DOI
[6] Y.Meng, S.Yang, H.Li, “Electro- and Photocatalytic Oxidative Upgrading of Biobased 5-Hydroxymethylfurfural”, ChemSusChem, 15 (2022), e202102581 | DOI
[7] H.Li, B.Cheng, et. all., “Recent advances in the application of bismuth-based catalysts for degrading environmental emerging organic contaminants through photocatalysis: A review”, J. Environ. Chem. Eng., 11 (2023), 110371 | DOI
[8] J.Sharma, P.Dhiman, et. all., “Advances in photocatalytic environmental and clean energy applications of bismuth-rich oxy halides-based heterojunctions:a review”, Materials Today Sustainability, 21 (2023), 100327 | DOI
[9] L.Dou, J.Zhong, J.Li, J.Luo, Y.Zeng, “Fabrication of Bi$_2$SiO$_5$ hierarchical microspheres with an efficient photocatalytic performance for rhodamine B and phenol removal”, Mater. Res. Bull., 116 (2019), 50–58 | DOI
[10] Y.Wu, X.Chang, M.Li, X.Hei, C.Liu, X.Zhang, “Studying the preparation of pure Bi$_{12}$SiO$_{20}$ by Pechini method with high photocatalytic performance”, J. Solgel Sci. Technol., 97 (2021), 311–319 | DOI
[11] Q.Guo, C.Zhou, Z.Ma, X.Yang, “Fundamentals of TiO$_2$ Photocatalysis: Concepts, Mechanisms, and Challenges”, Adv. Mater., 31 (2019), 1901997 | DOI
[12] J.Low, J.Yu, M.Jaroniec, S.Wageh, A.A.Al-Ghamdi, “Heterojunction Photocatalysts”, Adv. Mater., 29 (2017), 1601694 | DOI
[13] A.V.Emeline, A.V.Rudakova, V.K.Ryabchuk, N.Serpone, “Recent advances in composite and heterostructured photoactive materials for the photochemical conversion of solar energy”, Curr. Opin. Green Sustain. Chem., 34 (2022), 100588 | DOI
[14] S.Reichenberger, G.Marzun, M.Muhler, S.Barcikowski, “Perspective of Surfactant-free Colloidal Nanoparticles in Heterogeneous Catalysis”, ChemCatChem, 11 (2019), 1–31 | DOI
[15] A.A.Manshina, I.I.Tumkin, et. all., “The Second Laser Revolution in Chemistry: Emerging Laser Technologies for Precise Fabrication of Multifunctional Nanomaterials and Nanostructures”, Adv. Funct. Mater., 2024, 2405457 | DOI
[16] A.V.Shabalina, A.G.Golubovskaya, et. all., “Phase and structural thermal evolution of Bi-Si-O catalysts obtained via laser ablation”, Nanomaterials, 12 (2022), 4101 | DOI
[17] A.G.Golubovskaya, T.S.Kharlamova, et. all., “Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by $\beta$-Bi$_2$O$_3$/Bi$_{12}$SiO$_{20}$ Nanocomposites Produced by Laser”, J. Compos. Sci., 8 (2024), 42 | DOI
[18] E.S.Savelyev, A.G.Golubovskaya, D.A.Goncharova, T.S.Kharlamova, V.A.Svetlichnyi, “Effect of laser power density on formation of oxide particles during ablation of metallic bismuth in atmospheric air”, Optics and Laser Technology, 181 (2025), 111676 | DOI
[19] D.Souri, Z.E.Tahan, “A new method for the determination of optical band gap and the nature of optical transitions in semiconductors”, Appl. Phys. B, 119 (2015), 273–279 | DOI
[20] L.Dou, X.Jin, J.Chen, J.Zhong, J.Z.Li, Y.Zeng, R.Duan, “One-pot solvothermal fabrication of S-scheme OVs-Bi$_2$O$_3$/Bi$_2$SiO$_5$ microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants”, Appl. Surf. Sci., 527 (2020), 146775 | DOI
[21] D.Hou, X.Hu, Y.Wen, et. all., “Electrospun sillenite Bi$_{12}$MO$_{20}$ (M = Ti, Ge, Si) nanofibers: General synthesis, band structure, and photocatalytic activity”, Phys. Chem. Chem. Phys., 15 (2013), 20698 | DOI
[22] A.A.Isari, A.Payan, M.Fattahi, S.Jorfi, B.Kakavandi, “Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO$_2$ anchored on reduced graphene oxide (Fe-TiO$_2$/rGO): Characterization and feasibility, mechanism and pathway studies”, Appl. Surf. Sci., 462 (2018), 549–564 | DOI
[23] M.A.Butler, D.S.Ginley, “Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities”, Journal of The Electrochemical Society, 125 (1978), 228–232 | DOI
[24] W.Q.Li, Z.H.Wen, S.H. Tian, L.J.Shan, Y.Xiong, “Citric acid-assisted hydrothermal synthesis of a self-modified Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterojunction for efficient photocatalytic degradation of aqueous pollutants”, Catal. Sci. Technol., 8 (2018), 1051–1061 | DOI
[25] L.Dou, J.Li, N.Long, C.Lai, J.Zhong, J.Li, S.Huang, “Fabrication of 3D flower-like OVs-Bi$_2$SiO$_5$ hierarchical microstructures for visible light-driven removal of tetracycline”, Surf. Interfaces, 29 (2022), 101787 | DOI
[26] M.Isik, G.Surucu, A.Gencer, N.M.Gasanly, “Electronic, optical and thermodynamic characteristics of Bi$_{12}$SiO$_{20}$ sillenite: First principle calculations”, Mater. Chem. Phys., 267 (2021), 124711 | DOI
[27] J.Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization, John Wiley Sons, 2007, 19–43