Solid-phase synthesis and photocatalytic properties of~Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterostructures
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 309-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a new approach to the preparation of heterostructured nanoparticles (NPs) based on bismuth silicates Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ is proposed and implemented. This approach is based on solid-phase synthesis by annealing of a pre-homogenized mixture of $\beta$-Bi$_2$O$_3$ and SiO$_2$ powders in different ratios. For this purpose, industrial silica nanopowder and $\beta$-bismuth oxide NPs powder obtained by pulsed laser ablation (PLA) in air are used. The morphology, phase composition and optical properties of the obtained materials are studied. By changing the ratio of precursors, the powders similar in structure to single-phase bismuth silicates Bi$_2$SiO$_5$ and Bi$_{12}$SiO$_{20}$ as well as heterostructured NPs on their basis are obtained. The activity of the photocatalysts in the reactions of Rhodamine B (Rh B) decomposition and selective oxidation of 5-hydroxymethylfurfural (5-HMF) is estimated. The best photocatalytic activity is demonstrated by powders with a similar Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ (or 4Bi:1Si) phase ratio. As a result of the analysis of the data obtained, the formation of a type II heterojunction is proposed.
Keywords: solid-phase synthesis, bismuth silicates, heterostructured nanoparticles, pulsed laser ablation, 5-hydroxymethylfurfural.
Mots-clés : photocatalysis, heterojunction II type, rhodamine B
@article{JSFU_2025_18_3_a2,
     author = {Aleksandra G. Golubovskaya and Tamara S. Kharlamova and Valery A. Svetlichnyi},
     title = {Solid-phase synthesis and photocatalytic properties {of~Bi}$_2${SiO}$_5${/Bi}$_{12}${SiO}$_{20}$ heterostructures},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {309--319},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/}
}
TY  - JOUR
AU  - Aleksandra G. Golubovskaya
AU  - Tamara S. Kharlamova
AU  - Valery A. Svetlichnyi
TI  - Solid-phase synthesis and photocatalytic properties of~Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterostructures
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 309
EP  - 319
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/
LA  - en
ID  - JSFU_2025_18_3_a2
ER  - 
%0 Journal Article
%A Aleksandra G. Golubovskaya
%A Tamara S. Kharlamova
%A Valery A. Svetlichnyi
%T Solid-phase synthesis and photocatalytic properties of~Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterostructures
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 309-319
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/
%G en
%F JSFU_2025_18_3_a2
Aleksandra G. Golubovskaya; Tamara S. Kharlamova; Valery A. Svetlichnyi. Solid-phase synthesis and photocatalytic properties of~Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterostructures. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 309-319. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a2/

[1] B.Abhishek, A.Jayarama, et. all., “Challenges in photocatalytic hydrogen evolution: Importance of photocatalysts and photocatalytic reactors”, Int. J. Hydrogen Energy., 81 (2024), 1442–1466 | DOI

[2] Z.Lin, R.C.Shao, K.Y.Xin, L.Teck-Peng, “From biomass to fuel: Advancing biomass upcycling through photocatalytic innovation”, Mater. Today Chem., 38 (2024), 102091 | DOI

[3] P.Qiangsheng, W.Yuanfeng, et. all., “A review on the recent development of bismuth-based catalysts for CO$_2$ photoreduction”, J. Mol. Struct., 1294 (2023), 136404 | DOI

[4] A.Krishnan, A.Swarnalal, D.Das, M.Krishnan, V.S. Saji, S.M.A. Shibli, “A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants”, J. Environ. Sci., 139 (2024), 389–417 | DOI

[5] T.Butburee, P.Chakthranont, C.Phawa, K.Faungnawakij, “Beyond Artificial Photosynthesis: Prospects on Photobiorefinery”, ChemCatChem, 12 (2020), 1873–1890 | DOI

[6] Y.Meng, S.Yang, H.Li, “Electro- and Photocatalytic Oxidative Upgrading of Biobased 5-Hydroxymethylfurfural”, ChemSusChem, 15 (2022), e202102581 | DOI

[7] H.Li, B.Cheng, et. all., “Recent advances in the application of bismuth-based catalysts for degrading environmental emerging organic contaminants through photocatalysis: A review”, J. Environ. Chem. Eng., 11 (2023), 110371 | DOI

[8] J.Sharma, P.Dhiman, et. all., “Advances in photocatalytic environmental and clean energy applications of bismuth-rich oxy halides-based heterojunctions:a review”, Materials Today Sustainability, 21 (2023), 100327 | DOI

[9] L.Dou, J.Zhong, J.Li, J.Luo, Y.Zeng, “Fabrication of Bi$_2$SiO$_5$ hierarchical microspheres with an efficient photocatalytic performance for rhodamine B and phenol removal”, Mater. Res. Bull., 116 (2019), 50–58 | DOI

[10] Y.Wu, X.Chang, M.Li, X.Hei, C.Liu, X.Zhang, “Studying the preparation of pure Bi$_{12}$SiO$_{20}$ by Pechini method with high photocatalytic performance”, J. Solgel Sci. Technol., 97 (2021), 311–319 | DOI

[11] Q.Guo, C.Zhou, Z.Ma, X.Yang, “Fundamentals of TiO$_2$ Photocatalysis: Concepts, Mechanisms, and Challenges”, Adv. Mater., 31 (2019), 1901997 | DOI

[12] J.Low, J.Yu, M.Jaroniec, S.Wageh, A.A.Al-Ghamdi, “Heterojunction Photocatalysts”, Adv. Mater., 29 (2017), 1601694 | DOI

[13] A.V.Emeline, A.V.Rudakova, V.K.Ryabchuk, N.Serpone, “Recent advances in composite and heterostructured photoactive materials for the photochemical conversion of solar energy”, Curr. Opin. Green Sustain. Chem., 34 (2022), 100588 | DOI

[14] S.Reichenberger, G.Marzun, M.Muhler, S.Barcikowski, “Perspective of Surfactant-free Colloidal Nanoparticles in Heterogeneous Catalysis”, ChemCatChem, 11 (2019), 1–31 | DOI

[15] A.A.Manshina, I.I.Tumkin, et. all., “The Second Laser Revolution in Chemistry: Emerging Laser Technologies for Precise Fabrication of Multifunctional Nanomaterials and Nanostructures”, Adv. Funct. Mater., 2024, 2405457 | DOI

[16] A.V.Shabalina, A.G.Golubovskaya, et. all., “Phase and structural thermal evolution of Bi-Si-O catalysts obtained via laser ablation”, Nanomaterials, 12 (2022), 4101 | DOI

[17] A.G.Golubovskaya, T.S.Kharlamova, et. all., “Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by $\beta$-Bi$_2$O$_3$/Bi$_{12}$SiO$_{20}$ Nanocomposites Produced by Laser”, J. Compos. Sci., 8 (2024), 42 | DOI

[18] E.S.Savelyev, A.G.Golubovskaya, D.A.Goncharova, T.S.Kharlamova, V.A.Svetlichnyi, “Effect of laser power density on formation of oxide particles during ablation of metallic bismuth in atmospheric air”, Optics and Laser Technology, 181 (2025), 111676 | DOI

[19] D.Souri, Z.E.Tahan, “A new method for the determination of optical band gap and the nature of optical transitions in semiconductors”, Appl. Phys. B, 119 (2015), 273–279 | DOI

[20] L.Dou, X.Jin, J.Chen, J.Zhong, J.Z.Li, Y.Zeng, R.Duan, “One-pot solvothermal fabrication of S-scheme OVs-Bi$_2$O$_3$/Bi$_2$SiO$_5$ microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants”, Appl. Surf. Sci., 527 (2020), 146775 | DOI

[21] D.Hou, X.Hu, Y.Wen, et. all., “Electrospun sillenite Bi$_{12}$MO$_{20}$ (M = Ti, Ge, Si) nanofibers: General synthesis, band structure, and photocatalytic activity”, Phys. Chem. Chem. Phys., 15 (2013), 20698 | DOI

[22] A.A.Isari, A.Payan, M.Fattahi, S.Jorfi, B.Kakavandi, “Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO$_2$ anchored on reduced graphene oxide (Fe-TiO$_2$/rGO): Characterization and feasibility, mechanism and pathway studies”, Appl. Surf. Sci., 462 (2018), 549–564 | DOI

[23] M.A.Butler, D.S.Ginley, “Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities”, Journal of The Electrochemical Society, 125 (1978), 228–232 | DOI

[24] W.Q.Li, Z.H.Wen, S.H. Tian, L.J.Shan, Y.Xiong, “Citric acid-assisted hydrothermal synthesis of a self-modified Bi$_2$SiO$_5$/Bi$_{12}$SiO$_{20}$ heterojunction for efficient photocatalytic degradation of aqueous pollutants”, Catal. Sci. Technol., 8 (2018), 1051–1061 | DOI

[25] L.Dou, J.Li, N.Long, C.Lai, J.Zhong, J.Li, S.Huang, “Fabrication of 3D flower-like OVs-Bi$_2$SiO$_5$ hierarchical microstructures for visible light-driven removal of tetracycline”, Surf. Interfaces, 29 (2022), 101787 | DOI

[26] M.Isik, G.Surucu, A.Gencer, N.M.Gasanly, “Electronic, optical and thermodynamic characteristics of Bi$_{12}$SiO$_{20}$ sillenite: First principle calculations”, Mater. Chem. Phys., 267 (2021), 124711 | DOI

[27] J.Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization, John Wiley Sons, 2007, 19–43