Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_3_a13, author = {Sergey V. Ludkowski}, title = {Measures on smashed products of quasigroups and their algebras}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {420--429}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/} }
TY - JOUR AU - Sergey V. Ludkowski TI - Measures on smashed products of quasigroups and their algebras JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 420 EP - 429 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/ LA - en ID - JSFU_2025_18_3_a13 ER -
Sergey V. Ludkowski. Measures on smashed products of quasigroups and their algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 420-429. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/
[1] A.A.Adhikari, M.R.Adhikari, Basic Topology, v. 1–3, Springer, Singapore, 2022 | DOI
[2] C.Arhancet, C. Kriegler, “Projections, multipliers and decomposable maps on noncommutative $L_p$-spaces”, Mémoires de la Société Mathématique de France, 177 (2023), 1–185 | DOI | MR
[3] A.Arhangel'skii, M.Tkachenko, Topological Groups and Related Structures, World Sci., Atlantis Press, Amsterdam, 2008 | MR
[4] D.L.Cohn, Measure Theory, Birkhäuser, New York, 2013 | MR
[5] J.M.G.Fell, R.S.Doran, Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles, v. 1, 2, Acad. Press, Boston, 1988 | MR
[6] A.G.Farashahi, “Classical harmonic analysis over spaces of complex measures on coset spaces of compact subgroups”, Analysis Math., 43 (2017), 461–473 | DOI | MR
[7] V.Losert, “The derivation problem for group algebras”, Annals of Mathem., 168 (2008), 221–246 | DOI | MR
[8] S.V.Ludkovsky, “Topological transformation groups of manifolds over non-Archimedean fields, their representations and quasi-invariant measures, I; II”, 147, 2008, 6703–6846 | DOI
[9] W.Herforth, P.Plaumann, “Boolean and profinite loops”, Topology Proceedings, 37 (2011), 233–237 | MR
[10] V.Kakkar, “Boolean loops with compact left inner mapping groups are profinite”, Topology and Its Appl., 244 (2018), 51–54 | DOI | MR
[11] J.D.H.Smith, An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, 2007 | DOI | MR
[12] L.V.Sabinin, Smooth Quasigroups and Loops, Kluwer, Dordrecht, 1999 | DOI | MR
[13] F.Gürsey, C.-H.Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific Publ. Co., Singapore, 1996 | DOI | MR
[14] N.Bourbaki, Integration. Measure, integration of measures, Nauka, M., 1967 | MR
[15] S.V.Ludkowski, “Structure and functions of topological metagroups”, Axioms, 9 (2020), 1–11 | DOI
[16] S.V.Ludkowski, “Topologies on smashed twisted wreath products of metagroups”, Axioms, 12 (2023), 1–12 | DOI
[17] S.V.Ludkovsky, “Quasi-invariant aaand invariant functionals and measures on systems of topological loops and quasigroups”, Siberian Math. J., 64 (2023), 1186–1199 | DOI | MR
[18] B.Plotkin, Universal Algebra, Algebraic Logic, and Databases, Kluwer, New York, 1994 | MR
[19] S.V.Ludkovsky, “Existence of an invariant measure on a topological quasigroup”, Topology and Its Appl., 275 (2020), 1–11 | DOI | MR
[20] S.V.Ludkowski, “Left invariant measures on locally compact nonassociative core quasigroups”, Southeast Asian Bull. of Mathem., 46 (2022), 365–404 | MR
[21] R.Engelking, General Topology, Sigma Series in Pure Mathem., 6, Heldermann Verlag, Berlin, 1989 | MR
[22] A.S.Zuev, D.A.Leonov, “About managing the number of simultaneously functioning software robots of different types”, Russ. Technol. J., 12:4 (2024), 7–22 | DOI
[23] I.A.Batalin, “Quasigroup construction and first class constraints”, J. Math. Phys., 22 (1981), 1837–1850 | DOI | MR