Measures on smashed products of quasigroups and their algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 420-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study quasiinvariant measures on smashed and twisted wreath products of quasigroups. The quasiinvariance of measures is investigated relative to isotopies. Specific features are found for quasigroups in comparison with groups. Spaces of measures are scrutinized. Convolution algebras appear to be in general nonassociative because of the nonassociativity of the quasigroup. Ideals of topological convolution algebras are studied.
Keywords: measure, algebra, topology, invariance.
Mots-clés : quasigroup, convolution
@article{JSFU_2025_18_3_a13,
     author = {Sergey V. Ludkowski},
     title = {Measures on smashed products of quasigroups and their algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {420--429},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/}
}
TY  - JOUR
AU  - Sergey V. Ludkowski
TI  - Measures on smashed products of quasigroups and their algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 420
EP  - 429
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/
LA  - en
ID  - JSFU_2025_18_3_a13
ER  - 
%0 Journal Article
%A Sergey V. Ludkowski
%T Measures on smashed products of quasigroups and their algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 420-429
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/
%G en
%F JSFU_2025_18_3_a13
Sergey V. Ludkowski. Measures on smashed products of quasigroups and their algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 420-429. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/

[1] A.A.Adhikari, M.R.Adhikari, Basic Topology, v. 1–3, Springer, Singapore, 2022 | DOI

[2] C.Arhancet, C. Kriegler, “Projections, multipliers and decomposable maps on noncommutative $L_p$-spaces”, Mémoires de la Société Mathématique de France, 177 (2023), 1–185 | DOI | MR

[3] A.Arhangel'skii, M.Tkachenko, Topological Groups and Related Structures, World Sci., Atlantis Press, Amsterdam, 2008 | MR

[4] D.L.Cohn, Measure Theory, Birkhäuser, New York, 2013 | MR

[5] J.M.G.Fell, R.S.Doran, Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles, v. 1, 2, Acad. Press, Boston, 1988 | MR

[6] A.G.Farashahi, “Classical harmonic analysis over spaces of complex measures on coset spaces of compact subgroups”, Analysis Math., 43 (2017), 461–473 | DOI | MR

[7] V.Losert, “The derivation problem for group algebras”, Annals of Mathem., 168 (2008), 221–246 | DOI | MR

[8] S.V.Ludkovsky, “Topological transformation groups of manifolds over non-Archimedean fields, their representations and quasi-invariant measures, I; II”, 147, 2008, 6703–6846 | DOI

[9] W.Herforth, P.Plaumann, “Boolean and profinite loops”, Topology Proceedings, 37 (2011), 233–237 | MR

[10] V.Kakkar, “Boolean loops with compact left inner mapping groups are profinite”, Topology and Its Appl., 244 (2018), 51–54 | DOI | MR

[11] J.D.H.Smith, An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, 2007 | DOI | MR

[12] L.V.Sabinin, Smooth Quasigroups and Loops, Kluwer, Dordrecht, 1999 | DOI | MR

[13] F.Gürsey, C.-H.Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific Publ. Co., Singapore, 1996 | DOI | MR

[14] N.Bourbaki, Integration. Measure, integration of measures, Nauka, M., 1967 | MR

[15] S.V.Ludkowski, “Structure and functions of topological metagroups”, Axioms, 9 (2020), 1–11 | DOI

[16] S.V.Ludkowski, “Topologies on smashed twisted wreath products of metagroups”, Axioms, 12 (2023), 1–12 | DOI

[17] S.V.Ludkovsky, “Quasi-invariant aaand invariant functionals and measures on systems of topological loops and quasigroups”, Siberian Math. J., 64 (2023), 1186–1199 | DOI | MR

[18] B.Plotkin, Universal Algebra, Algebraic Logic, and Databases, Kluwer, New York, 1994 | MR

[19] S.V.Ludkovsky, “Existence of an invariant measure on a topological quasigroup”, Topology and Its Appl., 275 (2020), 1–11 | DOI | MR

[20] S.V.Ludkowski, “Left invariant measures on locally compact nonassociative core quasigroups”, Southeast Asian Bull. of Mathem., 46 (2022), 365–404 | MR

[21] R.Engelking, General Topology, Sigma Series in Pure Mathem., 6, Heldermann Verlag, Berlin, 1989 | MR

[22] A.S.Zuev, D.A.Leonov, “About managing the number of simultaneously functioning software robots of different types”, Russ. Technol. J., 12:4 (2024), 7–22 | DOI

[23] I.A.Batalin, “Quasigroup construction and first class constraints”, J. Math. Phys., 22 (1981), 1837–1850 | DOI | MR