Measures on smashed products of quasigroups and their algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 420-429

Voir la notice de l'article provenant de la source Math-Net.Ru

We study quasiinvariant measures on smashed and twisted wreath products of quasigroups. The quasiinvariance of measures is investigated relative to isotopies. Specific features are found for quasigroups in comparison with groups. Spaces of measures are scrutinized. Convolution algebras appear to be in general nonassociative because of the nonassociativity of the quasigroup. Ideals of topological convolution algebras are studied.
Keywords: measure, algebra, topology, invariance.
Mots-clés : quasigroup, convolution
@article{JSFU_2025_18_3_a13,
     author = {Sergey V. Ludkowski},
     title = {Measures on smashed products of quasigroups and their algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {420--429},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/}
}
TY  - JOUR
AU  - Sergey V. Ludkowski
TI  - Measures on smashed products of quasigroups and their algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 420
EP  - 429
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/
LA  - en
ID  - JSFU_2025_18_3_a13
ER  - 
%0 Journal Article
%A Sergey V. Ludkowski
%T Measures on smashed products of quasigroups and their algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 420-429
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/
%G en
%F JSFU_2025_18_3_a13
Sergey V. Ludkowski. Measures on smashed products of quasigroups and their algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 420-429. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a13/