Some remarks and corrections of recent resultsfrom the framework of $S$-metric spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 402-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

The content of this paper consists of results on Wardowski's $F$-contraction within $S$-metric spaces. Namely, in it we present corrections to some recent results by using only the property $\mathrm{F1}$ of strict increasing of the function $F$. In our results, we combine $\beta $-admissible functions with $ F$-contractions. Finally, we give an example that shows that $F$-contraction in the framework of $S$-metric spaces is a true generalization of Banach's contraction principle in the same framework.
Keywords: $S$-metric space, $b$-metric space, fixed point, $F$-contraction
Mots-clés : $\beta$-admissible.
@article{JSFU_2025_18_3_a11,
     author = {Nora Fetouci and Stojan Radenovi\'c},
     title = {Some remarks and corrections of recent resultsfrom the framework of $S$-metric spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {402--411},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a11/}
}
TY  - JOUR
AU  - Nora Fetouci
AU  - Stojan Radenović
TI  - Some remarks and corrections of recent resultsfrom the framework of $S$-metric spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 402
EP  - 411
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a11/
LA  - en
ID  - JSFU_2025_18_3_a11
ER  - 
%0 Journal Article
%A Nora Fetouci
%A Stojan Radenović
%T Some remarks and corrections of recent resultsfrom the framework of $S$-metric spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 402-411
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a11/
%G en
%F JSFU_2025_18_3_a11
Nora Fetouci; Stojan Radenović. Some remarks and corrections of recent resultsfrom the framework of $S$-metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 402-411. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a11/

[1] J.M.Afra, M.Sabbaghan, F.Taleghani, “Some new fixed point theorems for expansive map on $S$-metric spaces”, Theory Approx. Appl., 14:2 (2020), 57–64

[2] S.Chaipornjareansri, “Fixed point theorems for $F_w-$ contractions in complete $S$-metric spaces”, Thai J. Math., 2016, 98–109 | MR

[3] Lj.Ćirić, Some recent results in metrical fixed point theory, University of Belgrade, Beograd, Serbia, 2003

[4] K.M.Devi, Y.Rohen, K.A.Singh, “Fixed points of modified $F$-contractions in $S$-metric spaces”, J. Math. Comput. Sci., 12 (2022), 197 | DOI

[5] M.Din, U.Ishtiaq, M.Mukhtar, S.Sessa, H.A.Ghazwani, “On generalized Sehgal-Guseman-like contractions and their fixed-point results with applications to nonlinear fractional differential equations and boundary value problems for homogeneous transverse bars”, Mathematics, 12 (2024), 541 | DOI

[6] T.Došenović, S.Radenović, S.Sedghi, “Generalized metric spaces: Survey”, TWMS. J. Pure Appl. Math., 9:1 (2018), 3–17 | MR

[7] T.Došenović, S.Radenović, “A comment on "Fixed point theorems of JS-quasi-contractions"”, Indian J. Math. Dharma Prakash Gupta Memorial, 60:1 (2018), 141–152 | MR

[8] T.Došenović, M.Pavlović, S.Radenović, “Contractive conditions in $b$-metric spaces”, Vojno tehnički glasnik/Mil. Tech. Cour., 65:4 (2017), 851–865 | DOI

[9] N.Fabiano, Z.Kadelburg, N.Mirkov, Vesna Šešum Č avić, S. Radenović, “On $F$-contractions: A Survey”, Contemp. Math., 3:3 (2022), 327 http://ojs.wiserpub.com/index.php/CM/ | DOI

[10] D.Gopal, M.Abbas, D.K.Patel, C.Vetro, “Fixed points of á-type $F$-contractive mappings with an application to nonlinear fractional differential equation”, Acta Math. Sci., 36:B3 (2016), 957–970 | DOI | MR

[11] A.Gupta, “Cyclic contraction on $S$-metric space”, Int. J. Anal. Appl., 3:2 (2013), 119–130

[12] N.T.Hieu, N.T.Ly. N.V.Dung, “A generalization of Ćirić quasi-contractions for maps on $S$-metric spaces”, Thai J. Math., 13:2 (2015), 369–380 | MR

[13] K.Javed, F.Uddin, F.Adeel, M.Arshad, H.Alaeidizaji, V.Parvaneh, “Fixed point results for generalized contractions in $S$-metric spaces”, Mathematical Analysis and its Contemporary Applications, 3:2 (2021), 27–39

[14] B.Khomdram, Y.Rohen, M.S.Khan, N.Fabiano, “Fixed point results for $\beta -F-$ weak contraction mappings in complete $S$-metric spaces”, Mil. Tech. Cour., 2024, 3–24

[15] K.M.Devi, Y.Rohen, K.A.Singh, “Fixed points of modified $F$-contractions in $S$-metric spaces”, J. Math. Comput. Sci., 12 (2022), 197

[16] S.Radenović, Z.Kadelburg, D.Jandrlić, A.Jandrli ć, “Some results on weakly contractive maps”, Bull. Iranian Math. Soc., 38:3 (2012), 625–645 | MR

[17] Y.Rohen, T.Došenović, S.Radenović, “A note on the paper "A fixed point theorems in $S_b-$ metric spaces"”, Filomat, 31 (2017), 3335–3346 | DOI | MR

[18] G.S.Saluja, “Fixed point results for generalized F$ _{\sigma }-$ contraction in complete $S$-metric spaces”, Annals of Mathematics and Computer Science, 20 (2024), 25–40 | DOI | MR

[19] B.Samet, C.Vetro, P.Vetro, “Fixed point theorems for $\left( \alpha -\psi \right)-$ contractive type mappings”, Nonlinear Anal., 75 (2012), 2154–2165 | DOI | MR

[20] S.Sedghi, N.Shobe, A.Aliouche, “A generalization of fixed point theorems in $S$-metric spaces”, Matematički vesnik, 64:3 (2012), 258–266 | MR

[21] S.Sedghi, N.V.Dung, “Fixed point theorems on $S$-metric spaces”, Matematički vesnik, 66:1 (2014), 113–124 | MR

[22] S.Sedghi, M.M.Rezaee, T.Došenović, S.Radenovi ć, “Common fixed point theorems for contractive mappings satisfying $\Phi $-maps in $S$-metric spaces”, Acta Univ. Sapientiae, Mathematica, 8:2 (2016), 298–311 | DOI | MR

[23] T.Thaibema, Y.Rohen, T.Stephen, O.Budhichandra, “Fixed point of rational $F$-contractions in S-metric spaces”, J. Math. Comput. Sci., 12 (2022), 153 | DOI

[24] J.Vujaković, N.Kontrec, M.Tošić, N.Fabiano, S. Radenović, “New Results on $F$-Contractions in Complete Metric Spaces”, Mathematics, 10 (2022), 12 | DOI

[25] J.Vujaković, S.Radenović, “On some F -contraction of Piri-Kumam-Dung-type mappings in metric spaces”, Vojnotehni čki glasnik/Mil. Tech. Cour., 68:4 (2020), 697–714 | DOI

[26] D.Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory Appl., 2012:94 (2012) | DOI | MR

[27] M.Zhoua, X.-l.Liu, S.Radenović, “S-$\gamma $ -$\phi $-$\varphi $-contractive type mappings in $S$-metric spaces”, J. Nonlinear Sci. Appl., 10 (2017), 1613–1639 | DOI | MR