$m-cv$ measure $\omega ^{*} (x,E,D)$ and condenser capacity $C(E,D)$ in the class $m$-convex functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 387-401

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we study very basic concepts of potential theory: polar sets and $m-cv$ measures in the class of $m$-convex functions in real space ${\mathbb R}^{n}$. We also study capacity of condenser $C(E,D)$ in the class $m$-convex functions and will prove a number of its potential properties.
Keywords: $m$-subharmonic function, convex function, $m$-convex function, $m-cv$ polar set, $m-cv$ measure, Borel measures, Hessians.
@article{JSFU_2025_18_3_a10,
     author = {Azimbay Sadullaev and Rasulbek Sharipov and Mukhiddin Ismoilov},
     title = {$m-cv$ measure $\omega ^{*} (x,E,D)$ and condenser capacity $C(E,D)$ in the class $m$-convex functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {387--401},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a10/}
}
TY  - JOUR
AU  - Azimbay Sadullaev
AU  - Rasulbek Sharipov
AU  - Mukhiddin Ismoilov
TI  - $m-cv$ measure $\omega ^{*} (x,E,D)$ and condenser capacity $C(E,D)$ in the class $m$-convex functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 387
EP  - 401
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a10/
LA  - en
ID  - JSFU_2025_18_3_a10
ER  - 
%0 Journal Article
%A Azimbay Sadullaev
%A Rasulbek Sharipov
%A Mukhiddin Ismoilov
%T $m-cv$ measure $\omega ^{*} (x,E,D)$ and condenser capacity $C(E,D)$ in the class $m$-convex functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 387-401
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a10/
%G en
%F JSFU_2025_18_3_a10
Azimbay Sadullaev; Rasulbek Sharipov; Mukhiddin Ismoilov. $m-cv$ measure $\omega ^{*} (x,E,D)$ and condenser capacity $C(E,D)$ in the class $m$-convex functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 387-401. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a10/