Sommerfeld’s method for solving the dynamic rigid stamp indentation problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 300-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is based on Sommerfeld's ideas in solving the diffraction problem on a mirror segment. On this basis, a new method for solving the dynamic problem for a vibrating rigid stamp is developed. The solution is sought by minimizing a functional. Sommerfeld's method is used to select the only physically correct solution. Namely, the expressions in the minimized functional are reduced to dimensionless form. This allowed us to create a method for calculating wave acoustic fields for arbitrary radius of a rigid stamp. Applied to vibration problems, the solution for a small rigid stamp is obtained in explicit form. This allows stable calculation of vibrating wave fields for teleseismic distances. The program created on this basis allows carrying out calculations even on personal computers with OpenMP parallelization. A result of analytical calculations the distinction of wave fields for a stamp and a distributed source of small dimensions are shown.
Keywords: Sommerfeld method, mixed problem, hard stamp, functional minimization, dimensionality equalization, acoustic waves.
@article{JSFU_2025_18_3_a1,
     author = {Alexey G. Fatyanov},
     title = {Sommerfeld{\textquoteright}s method for solving the dynamic rigid stamp indentation problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {300--308},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a1/}
}
TY  - JOUR
AU  - Alexey G. Fatyanov
TI  - Sommerfeld’s method for solving the dynamic rigid stamp indentation problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 300
EP  - 308
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a1/
LA  - en
ID  - JSFU_2025_18_3_a1
ER  - 
%0 Journal Article
%A Alexey G. Fatyanov
%T Sommerfeld’s method for solving the dynamic rigid stamp indentation problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 300-308
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a1/
%G en
%F JSFU_2025_18_3_a1
Alexey G. Fatyanov. Sommerfeld’s method for solving the dynamic rigid stamp indentation problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 300-308. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a1/

[1] A.Sommerfeld, Partielle differentialgleichungen der physik, Leipzig, 1948 | MR

[2] S.G.Mikhlin, Application of integral equations, M., 1947 (in Russian) | MR

[3] W.Z.Parton, P.I.Perlin, Methods of mathematical theory of elasticity, M., 1981 pp. (in Russian) | MR

[4] V.A.Babeshko, The method of generalised factorisation in spatial dynamic mixed problems of elasticity theory, M., 1984 pp. (in Russian) | MR

[5] R.Mittra, S.Lee, Analytical techniques in the theory of guided waves, New York, 1971

[6] A.V.Razin, A.L.Sobisevich, Geoacoustics of layered media, M., 2012 (in Russian)

[7] V.A.Babeshko, I.S.Chichinin, Problems of vibrational research of the Earth, M., 1977, 53–61 (in Russian)

[8] V.V.Gushchin, V.P.Dokuchaev, Y.M.Zaslavsky, V.D.Konyukhova, Earth exploration by non-explosive seismic sources, M., 1981, 113–126 (in Russian)

[9] I.S.Chichinin, Vibratory radiation of seismic waves, M., 1984 (in Russian)

[10] A.G.Fatianov, “A semi-analytic method for solving direct dynamical problems in layered media”, Dokl. AN SSSR, 310:2 (1990), 323–327 | MR

[11] K.Aki, P.G.Richards, Quantitative seismology, San Francisco, 1983