On one integral representation of the potential type
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 293-299

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider some integral representation of the potential type (Cauchy–Fantappiè) for a smooth function defined on the boundary of a bounded multidimensional domain. Derivatives of this integral representation are found and their boundary behavior is studied. An analogue of the Bochner–Martinelli formula for smooth functions is proved.
Keywords: Bochner–Martinelli integral, bounded domain, boundary behavior.
@article{JSFU_2025_18_3_a0,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {On one integral representation of the potential type},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {293--299},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - On one integral representation of the potential type
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 293
EP  - 299
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/
LA  - en
ID  - JSFU_2025_18_3_a0
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T On one integral representation of the potential type
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 293-299
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/
%G en
%F JSFU_2025_18_3_a0
Alexander M. Kytmanov; Simona G. Myslivets. On one integral representation of the potential type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 293-299. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/