On one integral representation of the potential type
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 293-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider some integral representation of the potential type (Cauchy–Fantappiè) for a smooth function defined on the boundary of a bounded multidimensional domain. Derivatives of this integral representation are found and their boundary behavior is studied. An analogue of the Bochner–Martinelli formula for smooth functions is proved.
Keywords: Bochner–Martinelli integral, bounded domain, boundary behavior.
@article{JSFU_2025_18_3_a0,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {On one integral representation of the potential type},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {293--299},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - On one integral representation of the potential type
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 293
EP  - 299
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/
LA  - en
ID  - JSFU_2025_18_3_a0
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T On one integral representation of the potential type
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 293-299
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/
%G en
%F JSFU_2025_18_3_a0
Alexander M. Kytmanov; Simona G. Myslivets. On one integral representation of the potential type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 3, pp. 293-299. http://geodesic.mathdoc.fr/item/JSFU_2025_18_3_a0/

[1] V.S.Vladimiirov, Methods of the theory of functions of many complex variables, MIT Press, Cambridge, MA, 1966 | MR

[2] B.V.Shabat, Introduction to complex analysis, v. 2, Function of several variables, Amer. Math. Soc., Providence, 1992 | MR

[3] R.M.Range, Holomorphic functions and integral representations in several complex variables, Springer Verlag, 1986 | MR

[4] L.A.Aizenberg, A.P.Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Amer. Nath. Soc., Providence, RI, 1983 | MR

[5] A.M.Kytmanov, The Bochner-Martinelli integral and its applications, Birkhäuser, Basel–Boston–Berlin, 1995 | MR

[6] A.M.Kytmanov, S.G.Myslivets, Multidimensional Integral Representations. Problems of Analytic Continuation, Springer Verlag, Basel–Boston, 2015 | MR

[7] N.M.Günter, Potential theory andd its applications to basic problems of mathematical physics, Ungar, New York, 1967 | MR

[8] S.G.Myslivets, “Integral Operator of Potential Type for Infinitely Differentiable Functions”, Journal of Siberian Federal University, Mathematics and Physics, 17:4 (2024), 464–469 | MR