A classical aspect of the Dirac equation in the context of conformable fractional derivative
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 229-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, in the context of the conformable fractional derivative (CFD) and employing Ehrenfest's theorem, we investigate the classical limit of the Dirac equation within conformable fractional quantum mechanics. This leads to obtaining deformed classical equations. Here, we assess the effectiveness of Ehrenfest's theorem in deriving the classical limit considering CFD. Also, we examine the correspondence principle under the influence of CFD. Additionally, we obtain the conformable fractional continuity equation.
Keywords: conformable fractional continuity equation, Ehrenfest's theorem, classical limit, correspondence principle, conformable quantum mechanics.
Mots-clés : conformable fractional Dirac equation
@article{JSFU_2025_18_2_a8,
     author = {Ilyas Haouam},
     title = {A classical aspect of the {Dirac} equation in the context of conformable fractional derivative},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/}
}
TY  - JOUR
AU  - Ilyas Haouam
TI  - A classical aspect of the Dirac equation in the context of conformable fractional derivative
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 229
EP  - 242
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/
LA  - en
ID  - JSFU_2025_18_2_a8
ER  - 
%0 Journal Article
%A Ilyas Haouam
%T A classical aspect of the Dirac equation in the context of conformable fractional derivative
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 229-242
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/
%G en
%F JSFU_2025_18_2_a8
Ilyas Haouam. A classical aspect of the Dirac equation in the context of conformable fractional derivative. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 229-242. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/

[1] Paul A. Tipler, Ralph A. Llewellyn, Modern Physics, 5 ed., W. H. Freeman and Company, 2008

[2] N.Bohr, “Über die Serienspektra der Elemente”, Z. Physik, 423:2 (1920), 423–469 | DOI | MR

[3] P.Ehrenfest, “Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik”, Z. Physik, 45 (1927), 455 | DOI

[4] G.Friesecke, M.Koppen, “On the Ehrenfest theorem of quantum mechanics”, J. Math. Phys., 50 (2009), 082102 | DOI | MR

[5] Krüger H., “Classical limit of real Dirac theory: Quantization of relativistic central field orbits”, Found. Phys., 23 (1993), 1265 | DOI | MR

[6] W. R.Greenberg, A.Klein, C.T.Li, “Invariant tori and Heisenberg matrix mechanics: a new window on the quantum-classical correspondence”, Phys. Rep., 264:1-5 (1996), 167 | DOI | MR

[7] A.O.Bolivar, “Classical limit of fermions in phase space”, J. Math. Phys., 42:9 (2001), 4020 | DOI | MR

[8] I.Haouam, “Ehrenfest's theorem for the Dirac equation in noncommutative Phase-Space”, Math. Comput. Sci., 4:4 (2024), 53 | DOI | MR

[9] A.J.Makowski, “Exact classical limit of quantum mechanics: Central potentials and specific states”, Phys. Rev. A, 65:3 (2002), 032103 | DOI | MR

[10] K.G.Kay, “Exact wave functions from classical orbits. II. The Coulomb, Morse, Rosen-Morse, and Eckart systems”, Phys. Rev. A, 65:3 (2002), 03210 | DOI | MR

[11] R.Alicki, “Search for a border between classical and quantum worlds”, Phys. Rev. A, 65:3 (2002), 034104 | DOI

[12] I.Haouam, “Classical limit and Ehrenfest's theorem versus non-relativistic limit of noncommutative Dirac equation in the presence of minimal uncertainty in momentum”, Int. J. Theor. Phys., 62 (2023), 189 | DOI | MR

[13] M. L.Liang, Y.J.Sun, “Quantum-classical correspondence of the relativistic equations”, Ann. Phys., 2004, no. 1, 314 | DOI | MR

[14] M.L.Liang, et al., “Quantum-classical correspondence of the Dirac equation with a scalar-like potential”, Pramana. J. Phys., 72 (2009), 777 | DOI

[15] H.Spohn, “Semiclassical limit of the Dirac equation and spin precession”, Ann. Phys., 282:2 (2000), 420 | DOI | MR

[16] I.Haouam, L.Chetouani, “The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space”, J. Mod. Phys., 9 (2018), 2021 | DOI

[17] I.Haouam, “Foldy-Wouthuysen Transformation of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum”, Few-Body. Syst., 64:9 (2023) | DOI | MR

[18] J.T.Machado, et al, “Recent history of fractional calculus”, Commum. Nonlinear Sci. Numer. Simulat., 16 (2013), 1140 | DOI | MR

[19] R.Herrmann, Fractional Calculus: An Introduction for Physicists, World Sci. Publishing, Singapore, 2011 | MR

[20] J.T.Machado, et al., “Fractional Calculus: Quo Vadimus? (Where are we Going?)”, Frac. Calc. Appl. Anal., 18 (2015), 495 | DOI | MR

[21] G.W.Leibniz, “Letter from Hanover, Germany to G.F.A. L'Hospital, September 30, 1695”, Leibniz Mathematische Schriften, Olms-Verlag, Hildesheim, Germany, 1962, 301–302 ; first published: 1849 | MR

[22] J.Hadamard, Journal de Mathmatiques Pures et Appliques, 8 (1892), 101

[23] M.Caputo, “Linear models of dissipation whose Q is almost frequency independent-II. Geophys”, J. Int., 13:5 (1967), 529 | DOI

[24] Y.Povstenko, “Essentials of Fractional Calculus”, Fractional Thermoelasticity, Solid Mechanics and Its Applications, 219, Springer, Cham, 2015 | DOI | MR

[25] K.Oldham, J.Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974 | MR

[26] I.Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998 | MR

[27] R.Hilfer, Applications of fractional calculus in physics, World scientific Singapore, 2000 | MR

[28] A.A.Kilbas, H.M.Srivastava, J.J.Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR

[29] I.Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR

[30] R.Khalil, et al., “A new definition of fractional derivative”, J. Comput. Appl. Math., 65 (2014), 264 | DOI | MR

[31] T.Abdeljawad, “On conformable fractional calculus”, J. Comput. Appl. Math., 279 (2015), 57 | DOI | MR

[32] D.R.Anderson, “Taylor's Formula and Integral Inequalities for Conformable Fractional Derivatives”, Contributions in Mathematics and Engineering, eds. Pardalos P., Rassias T., Springer, Cham, 2016 | DOI | MR

[33] A.Atangana, D.Baleanu, A.Alsaedi, “New properties of conformable derivative”, Open. Math., 13:1 (2015), 000010151520150081 | DOI | MR

[34] E.Rabei, M.Al-Masaeed, A.Al-Jamel, “Solution of the conformable angular equation of the Schrtsdinger equation”, Progress in fractional differentiation and applications, 10:1 (2024), 137 | DOI

[35] H.Karayer, D.Demirhan, F.Büyükkılıç, “Conformable Fractional Nikiforov-Uvarov Method”, Comm. Theor. Phys., 66 (2016), 12 | DOI | MR

[36] Y.Zhang et al., “PT symmetry in a fractional Schrtsdinger equation”, Laser Photonics Reviews, 10:3 (2016), 526 | DOI

[37] D.R.Anderson, D.J.Ulness, “Properties of the Katugampola fractional derivative with potential application in quantum mechanics”, J. Math. Phys., 56 (2015), 063502 | DOI | MR

[38] W.S.Chung, S.Zare, H.Hassanabadi, “Investigation of conformable fractional schrtsdinger equation in presence of killingbeck and hyperbolic potentials”, Commun. Theor. Phys., 67 (2017), 250 | DOI

[39] F.S.Mozaffari, et al., “On the Conformable Fractional Quantum Mechanics”, J. Korean Phys. Soc., 72 (2018), 980 | DOI

[40] M.Al-Masaeed, E.M.Rabei, A.Al-Jamel, “Wkb approximation with conformable operator”, Mod. Phys. Lett. A, 37:22 (2022), 2250144 | DOI | MR

[41] U.N.Katugampola, A new fractional derivative with classical properties, 2014, arXiv: 1410.6535 | MR

[42] W.S.Chung, I.Haouam, H.Hassanabadi, “Quantum mechanics on a circle with a finite number of $\alpha$-uniformly distributed points”, Phys. Lett. A, 485 (2023), 129098 | DOI | MR

[43] Y.C.Enesiz, D.Baleanu, A.Kurt, O.Tasbozan, “New exact solutions of Burgers' type equations with conformable derivative”, Waves Rand. Complex Media, 27 (2017), 103 | DOI | MR

[44] H.W.Zhou, S.Yang, S.Q.Zhang, “Conformable derivative approach to anomalous diffusion”, Physica A Stat. Mech. Appl., 491 (2018), 1001 | DOI | MR

[45] F.Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Fractals and Fractional Calculus in Continuum mechanics, Springer-Verlag, New York, 1997 | MR

[46] F.S.Mozaffari, et al., “Investigation of the Dirac Equation by Using the Conformable Fractional Derivative”, J. Korean Phys. Soc., 72 (2018), 987 | DOI

[47] W.S.Chung, “Fractional Newton mechanics with conformable fractional derivative”, J. Comput. Appl. Math., 290 (2015), 150 | DOI | MR

[48] N.Ahmed, et al., “New exact solutions to space-time fractional telegraph equation with conformable derivative”, Int. J. Mod. Phys. B, 37:31 (2023), 2350275 | DOI

[49] M.J.Lazo, D.F.M.Torres, “Variational calculus with conformable fractional derivatives”, IEEE/CAA Journal of Automatica Sinica, 4:2 (2017), 340 | DOI | MR

[50] D.R.Anderson, E.Camrud, D.J.Ulness, “On the nature of the conformable derivative and its applications to physics”, J. Fract. Calc. Appl., 10:2 (2019), 92 | MR

[51] I.Haouam, “The non-relativistic limit of the DKP equation in noncommutative phase-space”, Symmetry, 11:2 (2019), 223 | DOI | MR