Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_2_a8, author = {Ilyas Haouam}, title = {A classical aspect of the {Dirac} equation in the context of conformable fractional derivative}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {229--242}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/} }
TY - JOUR AU - Ilyas Haouam TI - A classical aspect of the Dirac equation in the context of conformable fractional derivative JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 229 EP - 242 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/ LA - en ID - JSFU_2025_18_2_a8 ER -
%0 Journal Article %A Ilyas Haouam %T A classical aspect of the Dirac equation in the context of conformable fractional derivative %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 229-242 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/ %G en %F JSFU_2025_18_2_a8
Ilyas Haouam. A classical aspect of the Dirac equation in the context of conformable fractional derivative. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 229-242. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a8/
[1] Paul A. Tipler, Ralph A. Llewellyn, Modern Physics, 5 ed., W. H. Freeman and Company, 2008
[2] N.Bohr, “Über die Serienspektra der Elemente”, Z. Physik, 423:2 (1920), 423–469 | DOI | MR
[3] P.Ehrenfest, “Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik”, Z. Physik, 45 (1927), 455 | DOI
[4] G.Friesecke, M.Koppen, “On the Ehrenfest theorem of quantum mechanics”, J. Math. Phys., 50 (2009), 082102 | DOI | MR
[5] Krüger H., “Classical limit of real Dirac theory: Quantization of relativistic central field orbits”, Found. Phys., 23 (1993), 1265 | DOI | MR
[6] W. R.Greenberg, A.Klein, C.T.Li, “Invariant tori and Heisenberg matrix mechanics: a new window on the quantum-classical correspondence”, Phys. Rep., 264:1-5 (1996), 167 | DOI | MR
[7] A.O.Bolivar, “Classical limit of fermions in phase space”, J. Math. Phys., 42:9 (2001), 4020 | DOI | MR
[8] I.Haouam, “Ehrenfest's theorem for the Dirac equation in noncommutative Phase-Space”, Math. Comput. Sci., 4:4 (2024), 53 | DOI | MR
[9] A.J.Makowski, “Exact classical limit of quantum mechanics: Central potentials and specific states”, Phys. Rev. A, 65:3 (2002), 032103 | DOI | MR
[10] K.G.Kay, “Exact wave functions from classical orbits. II. The Coulomb, Morse, Rosen-Morse, and Eckart systems”, Phys. Rev. A, 65:3 (2002), 03210 | DOI | MR
[11] R.Alicki, “Search for a border between classical and quantum worlds”, Phys. Rev. A, 65:3 (2002), 034104 | DOI
[12] I.Haouam, “Classical limit and Ehrenfest's theorem versus non-relativistic limit of noncommutative Dirac equation in the presence of minimal uncertainty in momentum”, Int. J. Theor. Phys., 62 (2023), 189 | DOI | MR
[13] M. L.Liang, Y.J.Sun, “Quantum-classical correspondence of the relativistic equations”, Ann. Phys., 2004, no. 1, 314 | DOI | MR
[14] M.L.Liang, et al., “Quantum-classical correspondence of the Dirac equation with a scalar-like potential”, Pramana. J. Phys., 72 (2009), 777 | DOI
[15] H.Spohn, “Semiclassical limit of the Dirac equation and spin precession”, Ann. Phys., 282:2 (2000), 420 | DOI | MR
[16] I.Haouam, L.Chetouani, “The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space”, J. Mod. Phys., 9 (2018), 2021 | DOI
[17] I.Haouam, “Foldy-Wouthuysen Transformation of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum”, Few-Body. Syst., 64:9 (2023) | DOI | MR
[18] J.T.Machado, et al, “Recent history of fractional calculus”, Commum. Nonlinear Sci. Numer. Simulat., 16 (2013), 1140 | DOI | MR
[19] R.Herrmann, Fractional Calculus: An Introduction for Physicists, World Sci. Publishing, Singapore, 2011 | MR
[20] J.T.Machado, et al., “Fractional Calculus: Quo Vadimus? (Where are we Going?)”, Frac. Calc. Appl. Anal., 18 (2015), 495 | DOI | MR
[21] G.W.Leibniz, “Letter from Hanover, Germany to G.F.A. L'Hospital, September 30, 1695”, Leibniz Mathematische Schriften, Olms-Verlag, Hildesheim, Germany, 1962, 301–302 ; first published: 1849 | MR
[22] J.Hadamard, Journal de Mathmatiques Pures et Appliques, 8 (1892), 101
[23] M.Caputo, “Linear models of dissipation whose Q is almost frequency independent-II. Geophys”, J. Int., 13:5 (1967), 529 | DOI
[24] Y.Povstenko, “Essentials of Fractional Calculus”, Fractional Thermoelasticity, Solid Mechanics and Its Applications, 219, Springer, Cham, 2015 | DOI | MR
[25] K.Oldham, J.Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974 | MR
[26] I.Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998 | MR
[27] R.Hilfer, Applications of fractional calculus in physics, World scientific Singapore, 2000 | MR
[28] A.A.Kilbas, H.M.Srivastava, J.J.Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR
[29] I.Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR
[30] R.Khalil, et al., “A new definition of fractional derivative”, J. Comput. Appl. Math., 65 (2014), 264 | DOI | MR
[31] T.Abdeljawad, “On conformable fractional calculus”, J. Comput. Appl. Math., 279 (2015), 57 | DOI | MR
[32] D.R.Anderson, “Taylor's Formula and Integral Inequalities for Conformable Fractional Derivatives”, Contributions in Mathematics and Engineering, eds. Pardalos P., Rassias T., Springer, Cham, 2016 | DOI | MR
[33] A.Atangana, D.Baleanu, A.Alsaedi, “New properties of conformable derivative”, Open. Math., 13:1 (2015), 000010151520150081 | DOI | MR
[34] E.Rabei, M.Al-Masaeed, A.Al-Jamel, “Solution of the conformable angular equation of the Schrtsdinger equation”, Progress in fractional differentiation and applications, 10:1 (2024), 137 | DOI
[35] H.Karayer, D.Demirhan, F.Büyükkılıç, “Conformable Fractional Nikiforov-Uvarov Method”, Comm. Theor. Phys., 66 (2016), 12 | DOI | MR
[36] Y.Zhang et al., “PT symmetry in a fractional Schrtsdinger equation”, Laser Photonics Reviews, 10:3 (2016), 526 | DOI
[37] D.R.Anderson, D.J.Ulness, “Properties of the Katugampola fractional derivative with potential application in quantum mechanics”, J. Math. Phys., 56 (2015), 063502 | DOI | MR
[38] W.S.Chung, S.Zare, H.Hassanabadi, “Investigation of conformable fractional schrtsdinger equation in presence of killingbeck and hyperbolic potentials”, Commun. Theor. Phys., 67 (2017), 250 | DOI
[39] F.S.Mozaffari, et al., “On the Conformable Fractional Quantum Mechanics”, J. Korean Phys. Soc., 72 (2018), 980 | DOI
[40] M.Al-Masaeed, E.M.Rabei, A.Al-Jamel, “Wkb approximation with conformable operator”, Mod. Phys. Lett. A, 37:22 (2022), 2250144 | DOI | MR
[41] U.N.Katugampola, A new fractional derivative with classical properties, 2014, arXiv: 1410.6535 | MR
[42] W.S.Chung, I.Haouam, H.Hassanabadi, “Quantum mechanics on a circle with a finite number of $\alpha$-uniformly distributed points”, Phys. Lett. A, 485 (2023), 129098 | DOI | MR
[43] Y.C.Enesiz, D.Baleanu, A.Kurt, O.Tasbozan, “New exact solutions of Burgers' type equations with conformable derivative”, Waves Rand. Complex Media, 27 (2017), 103 | DOI | MR
[44] H.W.Zhou, S.Yang, S.Q.Zhang, “Conformable derivative approach to anomalous diffusion”, Physica A Stat. Mech. Appl., 491 (2018), 1001 | DOI | MR
[45] F.Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Fractals and Fractional Calculus in Continuum mechanics, Springer-Verlag, New York, 1997 | MR
[46] F.S.Mozaffari, et al., “Investigation of the Dirac Equation by Using the Conformable Fractional Derivative”, J. Korean Phys. Soc., 72 (2018), 987 | DOI
[47] W.S.Chung, “Fractional Newton mechanics with conformable fractional derivative”, J. Comput. Appl. Math., 290 (2015), 150 | DOI | MR
[48] N.Ahmed, et al., “New exact solutions to space-time fractional telegraph equation with conformable derivative”, Int. J. Mod. Phys. B, 37:31 (2023), 2350275 | DOI
[49] M.J.Lazo, D.F.M.Torres, “Variational calculus with conformable fractional derivatives”, IEEE/CAA Journal of Automatica Sinica, 4:2 (2017), 340 | DOI | MR
[50] D.R.Anderson, E.Camrud, D.J.Ulness, “On the nature of the conformable derivative and its applications to physics”, J. Fract. Calc. Appl., 10:2 (2019), 92 | MR
[51] I.Haouam, “The non-relativistic limit of the DKP equation in noncommutative phase-space”, Symmetry, 11:2 (2019), 223 | DOI | MR