Physically nonlinear deformation of the shell using a three-field fem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 209-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method has been developed for implementing an algorithm for determining the stress-strain state (SSS) of a thin shell based on the finite element method (FEM) in a three-field formulation under step loading. A quadrangular fragment of the median surface of the thin shell is accepted as the finite element. Nodal unknowns at the loading step used: increments of kinematic quantities (increments of displacements and their derivatives); increments of deformation quantities (increments of deformations and curvatures of the median surface); increments of force values (increments of forces and moments). The approximation of kinematic quantities was carried out using bicubic shape functions based on Hermite polynomials of the third degree, and force and deformation quantities using bilinear functions. To account for the physical nonlinearity of the shell material, the defining equations are used in two versions: the first is the defining equations of the theory of plastic flow and the second is the defining equations based on the proposed hypothesis of proportionality a component of deviators of strain increments and stress increments. The stiffness matrix of the finite element is formed on the basis of a nonlinear Lagrange functional for the loading step, expressing the equality of possible and actual work of given loads and internal forces, with the complementary condition that the actual work of the increments of internal forces is equal to zero on the difference in increments of deformation quantities determined by geometric relations and using approximating expressions. An example of calculation is given using the resulting finite element stiffness matrix.
Keywords: finite element in the three-field formulation, physical nonlinearity of the material, variants of the governing equations, nonlinear Lagrange functional with condition.
@article{JSFU_2025_18_2_a6,
     author = {Mikhail Yu. Klochkov and Anatoly P. Nikolaev and Valeria A. Pshenichkina and Olga V. Vakhnina and Aleksandr S. Andreev and Yuri V. Klochkov},
     title = {Physically nonlinear deformation of the shell using a three-field fem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {209--217},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a6/}
}
TY  - JOUR
AU  - Mikhail Yu. Klochkov
AU  - Anatoly P. Nikolaev
AU  - Valeria A. Pshenichkina
AU  - Olga V. Vakhnina
AU  - Aleksandr S. Andreev
AU  - Yuri V. Klochkov
TI  - Physically nonlinear deformation of the shell using a three-field fem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 209
EP  - 217
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a6/
LA  - en
ID  - JSFU_2025_18_2_a6
ER  - 
%0 Journal Article
%A Mikhail Yu. Klochkov
%A Anatoly P. Nikolaev
%A Valeria A. Pshenichkina
%A Olga V. Vakhnina
%A Aleksandr S. Andreev
%A Yuri V. Klochkov
%T Physically nonlinear deformation of the shell using a three-field fem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 209-217
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a6/
%G en
%F JSFU_2025_18_2_a6
Mikhail Yu. Klochkov; Anatoly P. Nikolaev; Valeria A. Pshenichkina; Olga V. Vakhnina; Aleksandr S. Andreev; Yuri V. Klochkov. Physically nonlinear deformation of the shell using a three-field fem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 209-217. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a6/

[1] Yu.Klochkov, A.Nikolaev, V.Pshenichkina, O.Vakhnina, M.Klochkov, “Three-field fem for analysis of thin elastic shells”, Magazine of Civil Engineering, 17:3(127) (2024), 12710

[2] Yu.V.Klochkov, V.A.Pshenichkina, A.P.Nikolaev, S.S.Marchenko, O.V.Vakhnina, M.Yu.Klochkov, “Calculation of shells of revolution with the use of a mixed fem with a vector approximation procedure”, Journal of Machinery Manufacture and Reliability, 53:1 (2024), 10–21 | DOI

[3] M.Cervera, M.Chiumenti, R.Codina, “Mixed stabilized finite element methods in nonlinear solid mechanics: Part I: Formulation”, Comput. Meth. Appl. Mech. Eng., 199:37-40 (2010), 2559–2570 | DOI | MR

[4] M.Cervera, M.Chiumenti, R.Codina, “Mixed stabilized finite element methods in nonlinear solid mechanics: Part III: Compressible and incompressible plasticity”, Comput. Meth. Appl. Mech. Eng., 285:1 (2015), 752–775 | DOI | MR

[5] N.A.Nodargi, P.Bisegna, “A novel high-performance mixed membrane finite element for the analysis of inelastic structures”, Comput. Struct., 182 (2017), 337–353 | DOI | MR

[6] F.S.Liguori, A.Madeo, G.Garcea, “A mixed finite-element formulation for the elasto-plastic analysis of shell structures”, Materials Research Proceedings, 26 (2023), 227–232 | DOI

[7] F.S.Liguori, A.Madeo, G.Garcea, “A dual decomposition of the closest point projection in incremental elasto-plasticity using a mixed shell finite element”, International Journal for Numerical Methods in Eng., 123 (2022), 6243–6266 | DOI | MR

[8] A.Bilotta, L.Leonetti, G.Garcea, “An algorithm for incremental elastoplastic analysis using equality constrained sequential quadratic programming”, Comput. Struct., 102-103 (2012), 97–107 | DOI

[9] A.Bilotta, G.Garcea, L.Leonetti, “A composite mixed finite element model for the elasto-plastic analysis of 3D structural problems”, Finite Elcm. Anal. Des., 113 (2016), 43–53 | DOI

[10] L.A.M.Mendes, L.M.S.S.Castro, “Hybrid-mixed stress finite element models in elastoplastic analysis”, Finite Elem. Anal. Des., 45:12 (2009), 863–875 | DOI | MR

[11] N.A.Nodargi, P.Bisegna, “State update algorithm for isotropic elastoplasticity by incremental energy minimization”, Int. J. Numer. Methods Eng., 105:3 (2015), 163–196 | DOI | MR

[12] N.A.Nodargi, E.Artioli, F.Caselli, P.Bisegna, “State update algorithm for associative elastic-plastic pressure-insensitive materials by incremental energy minimization”, Fracture and Structural Integrity, 29 (2014), 111–127 | DOI

[13] A.Bilotta, L.Leonetti, G.Garcea, “Three field finite elements for the elastoplastic analysis of 2D continua”, Finite Elem. Anal. Des., 47:10 (2011), 1119–1130 | DOI | MR

[14] A.Sh.Dzhabrailov, A.P.Nikolaev, Y.V.Klochkov, N.A.Gureeva, “Accounting for displacement as a solid in the FEM algorithm for the calculation of shells of rotation”, Izvestia of the Russian Academy of Sciences. Mechanics of Solid State, 6 (2023), 23–38 (in Russian)

[15] L.I.Sedov, Mechanics of Continuous Medium, v. 1, Nauka, M., 1994 pp. (in Russian) | MR