Computer simulation of self-assembly of structure from an ensemble of nanoparticles
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 199-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Self-assembly is one of the methods utilized to create intricate geometry-based structures at the nanoscale. Earlier research in this field has shown that the formation of multiparticle structures using this technique is primarily achievable through gradual assembly, where a new particle is connected with a previously formed cluster. But step-by-step construction requires additional expenses and may result in defects within the already formed structures. If step-by-step assembly is not appropriate, a structure can be formed from a ensemble of particles without additional influence, but it is uncertain whether the probability of structure formation and the process selectivity are high. The paper presents a mathematical model that demonstrates how to derive a structure from an ensemble of particles, describes its implementation through software, and proposes the result of computational experiments.
Keywords: mathematical model, nanostructure self-assembly, computational experiment, Langevin dynamics.
@article{JSFU_2025_18_2_a5,
     author = {Viktoriya S. Petrakova and Alexey S. Tsipotan},
     title = {Computer simulation of self-assembly of structure from an ensemble of nanoparticles},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {199--208},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a5/}
}
TY  - JOUR
AU  - Viktoriya S. Petrakova
AU  - Alexey S. Tsipotan
TI  - Computer simulation of self-assembly of structure from an ensemble of nanoparticles
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 199
EP  - 208
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a5/
LA  - en
ID  - JSFU_2025_18_2_a5
ER  - 
%0 Journal Article
%A Viktoriya S. Petrakova
%A Alexey S. Tsipotan
%T Computer simulation of self-assembly of structure from an ensemble of nanoparticles
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 199-208
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a5/
%G en
%F JSFU_2025_18_2_a5
Viktoriya S. Petrakova; Alexey S. Tsipotan. Computer simulation of self-assembly of structure from an ensemble of nanoparticles. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 199-208. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a5/

[1] M.Nasrollahzadeh, M.Sajadi, M.Sajjadi, Z.Issaabad, “An Introduction to Nanotechnology”, Interface Science and Technology, 28 (2019), 113–143 | DOI

[2] K.Deng, Zh.Luo, L.Tana, Z.Quan, “Self-assembly of anisotropic nanoparticles into functional superstructures”, Chem. Soc. Rev., 49 (2020), 6002–6038 | DOI

[3] P.Pula, A.Leniart, P.Majewski, “Solvent-assisted self-assembly of block copolymer thin films”, Soft Matter, 18 (2022), 4042–4066 | DOI

[4] P.Kundu, D.Samanta, R.Leizrowice, et al., “Light-controlled self-assembly of non-photoresponsive nanoparticles”, Nature Chem., 7 (2015), 649–652 | DOI

[5] Y.,Dou B.Wang, M.Jin, Y.Yu, G.Zhou, L.Shui, “A review on self-assembly in microfluidic devices”, J. of Micromechanics and Microengineering, 27 (2017), 113002 | DOI

[6] D.Dordrecht, Nanodiamonds: Applications in Biology and Nanoscale Medicine, Springer, London, 2010

[7] A.Vul, E.Eydelman, M.Inakuma, E.Osawa, “Correlation between viscosity and absorption of electromagnetic waves in an aqueous UNCD suspension”, Diamond Relat. Mater., 16:12 (2007), 2023–2028 | DOI

[8] J.Wang, P.Jiang, Z.Han, L.Qiu, C.Wang, B.Zheng, J.Xia, “Fast Self-Assembly Kinetics of Quantum Dots and a Dendrimeric Peptide Ligand”, Langmuir, 28:21 (2012), 7962–7966 | DOI

[9] S.Watanabe, M Y.ino, Y.Ichikawa, M.Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly”, Langmuir, 28:36 (2012), 12982–12988 | DOI

[10] V.Slabko, G.Khachatryan, A.Aleksandrovsky, “Self-organized aggregation of small metal particles controlled by an external light field”, JETP Letters, 84:6 (2006), 300–304 | DOI

[11] V.Slabko, A.Tsipotan, A.Aleksandrovsky, “Resonant light-controlled self-assembly of ordered nanostructures”, Photonics and Nanostructures, Fundamentals and Applications, 10:4 (2012), 636–643 | DOI

[12] V.Tkachenko, A.Tsipotan, A.Aleksandrovsky, V.Slabko, “Three-dimensional model of quantum dots' self-assembly under the action of laser radiation”, Computer Optics, 41:4 (2017), 577–580 | DOI

[13] A.Tsipotan, M.Gerasimova, V.Slabko, A.Aleksandrovsk, “Laser-induced wavelength-controlled self-assembly of colloidal quasi-resonant quantum dots”, Optics Express, 24:10 (2016), 11145–11150 | DOI

[14] V.Kornienko, A.Tsipotan, A.Aleksandrovsky, V.Slabko, “Brownian dynamics of the self-assembly of complex nanostructures in the field of quasi-resonant laser radiation”, Photonics and Nanostructures - Fundamentals and Applications, 35 (2019), 100707 | DOI

[15] V.Petrakova, A.Tsipotan, V.Slabko, “The mathematical model of quantum dots pair orientation under laser radiation field”, Computer Optics, 46:4 (2022), 555–560 | DOI | MR

[16] H.Goldstein, Classical Mechanics, Addison-Wesley, MA, 1980 | MR