On the velocities of Rayleigh surface waves propagating along boundaries of generalized continua
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 191-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is demonstrated that mathematical models of gradient-elastic medium and reduced Cosserat medium, in contrast to the model of classical deformable solid, allow one to describe experimentally observed dispersion of Rayleigh surface wave, i.e., relationship between phase velocity of surface wave and frequency. At the same time, according to the model of gradient-elastic half-space, velocity of surface wave cannot exceed the velocity of shear wave but at certain values of frequency it can reach it. According to reduced Cosserat model, velocity of surface wave exceeds the velocity of shear wave as well as velocity of propagation of surface wave in classical half-space and gradient-elastic half-space.
Keywords: gradient-elastic half-space, reduced Cosserat model, surface wave, phase velocity, frequency.
Mots-clés : dispersion
@article{JSFU_2025_18_2_a4,
     author = {Vladimir I. Erofeev and Artem M. Antonov and Alexey O. Malkhanov},
     title = {On the velocities of {Rayleigh} surface waves propagating along boundaries of generalized continua},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {191--198},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a4/}
}
TY  - JOUR
AU  - Vladimir I. Erofeev
AU  - Artem M. Antonov
AU  - Alexey O. Malkhanov
TI  - On the velocities of Rayleigh surface waves propagating along boundaries of generalized continua
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 191
EP  - 198
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a4/
LA  - en
ID  - JSFU_2025_18_2_a4
ER  - 
%0 Journal Article
%A Vladimir I. Erofeev
%A Artem M. Antonov
%A Alexey O. Malkhanov
%T On the velocities of Rayleigh surface waves propagating along boundaries of generalized continua
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 191-198
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a4/
%G en
%F JSFU_2025_18_2_a4
Vladimir I. Erofeev; Artem M. Antonov; Alexey O. Malkhanov. On the velocities of Rayleigh surface waves propagating along boundaries of generalized continua. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 191-198. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a4/

[1] Lord Rayleigh, “On waves propagated along the plane surface of an elastic solid”, Proceedings of the London Mathematical Society, s1-17:2 (1885), 4–11 | DOI | MR

[2] K.Aki, P.G.Richards, Quantitative seismology: theory and methods, 2nd edition, University Science Books, Sausalito, California, 2002

[3] I.A.Viktorov, Sound surface waves in solids, Nauka, M., 1981 pp. (in Russian)

[4] V.V.Krylov, “On the theory of railway-induced ground vibrations”, Journal de Physique IV, 4:C5 (1994), 769–772 | DOI

[5] V.V.Krylov, C.C.Ferguson, “Calculation of low-frequency ground vibrations from railway trains”, Applied Acoustics, 42 (1994), 199–213 | DOI

[6] V.V.Krylov, “Generation of ground vibrations by superfast trains”, Applied Acoustics, 44 (1995), 149–164 | DOI

[7] V.V.Krylov, “Vibrational impact of high-speed trains: effect of track dynamics”, Journal of the Acoustical Society of America, 101:6 (1996), 3121–3134 | DOI

[8] V.V.Krylov, “Spectra of low-frequency ground vibrations generated by high-speed trains on layered ground”, Journal of Low Frequency Noise, Vibration and Active Control, 16:4 (1997), 257–270 | DOI

[9] V.V.Krylov, “Effect of track properties on ground vibrations generated by high-speed trains”, Acustica-Acta Acustica, 84:1 (1998), 78–90

[10] V.V.Krylov, “Ground vibration boom from high-speed trains”, Journal of Low Frequency Noise, Vibration and Active Control, 18:4 (1999), 207–218 | DOI

[11] V.V.Krylov (ed.), Noise and vibration from high speed trains, Thomas Telford Publishing, London, 2001

[12] A.I.Vesnitsky, Waves in systems with moving boundaries and loads, Fizmatlit, M., 2001 pp. (in Russian)

[13] A.I.Vesnitsky, Selected works on mechanics, Nash Dom Publ., Nizhny Novgorod, 2010 pp. (in Russian)

[14] G.G.Denisov, V.V.Novikov, E.K.Kugusheva, “On the problem of stability of one-dimensional infinite elastic systems”, Applied Mathematics and Mechanics, 49:6 (1985), 164–168 (in Russian)

[15] S.V.Butova, S.I.Gerasimov, V.I.Erofeev, V.G.Kamchatnyi, “Stability of high-speed objects moving along a rocket track guide”, Journal of Machinery Manufacture and Reliability, 44:1–5 (2015) | DOI

[16] S.I.Gerasimov, V.I.Erofeev, “Calculation of flexural-and-torsional vibrations of a rocket track rail”, Journal of Machinery Manufacture and Reliability, 45:3 (2016), 211–213 | DOI

[17] S.I.Gerasimov, V.I.Erofeev, V.G.Kamchatnyi, I.A.Odzerikho, “The sliding contact condition in stability analysis of stage motion for a rocket sled track facility”, Journal of Machinery Manufacture and Reliability, 47:3 (2018), 221–226 | DOI

[18] S.I.Gerasimov, V.I.Erofeev, D.A.Kolesov, E.E.Lisenkova, “Dynamics of deformable systems carrying moving (review of publication and dissertation research)”, Bulletin of Science and Technical Development, 160:1 (2021), 25–47 | DOI

[19] S.A.Astakhov, V.I.Biryukov, A.V.Kataev, “Evaluation of the efficiency of various methods of braking the stored equipment on a limited length during high-speed track tests of aviation and rocket technology products”, Bulletin of the Moscow Aviation Institute, 29:2 (2022), 20–34 (in Russian)

[20] S.A.Astakhov, V.I.Biryukov, A.V.Kataev, “Experimental determination of vibration conductivity by structural elements of a rocket carriage during high-speed track tests of aircraft”, Siberian Aerospace Journal, 24:1 (2023), 44–63 (in Russian) | DOI

[21] H.Altenbach, G.A.Maugin, V.Erofeev (eds), Mechanics of Generalized Continua, Advanced Structured Matherials, 7, Springer–Verlag, Berlin-Heidelberg, 2011 | MR

[22] H.Altenbach, S.Forest, A.Krivtsov (Eds), Generalized Continua as Models with Multi-Scale Effects or Under Multi-Field Actions, Advanced Structured Matherials, 22, Springer–Verlag, Berlin-Heidelberg, 2013

[23] H.Altenbach, V.A.Eremeyev (Eds), Generalized Continua - from the Theory to Engineering Applications, Springer, Wien, 2013 | MR

[24] H.Altenbach, S.Forest (Eds), Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Matherials, 42, Springer–Verlag, Switzerland, 2016 | DOI | MR

[25] A.M.Antonov, V.I.Erofeev, A.O.Malkhanov, “Excitation of waves by a high-speed source moving along the border gradient-elastic half-space”, IOP Conference Series: Materials Science and Engineering, 971:3 (2020), 032068 | DOI | MR

[26] E. et F. Cosserat, Theorie des corps deformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909

[27] W.Nowacki, Theory of asymmetric elasticity, Pergamon Press, Oxford, 1986 | MR

[28] L.M.Schwartz, D.L.Jonson, S.Feng, “Vibrational models in granular materials”, Physical Review Letters, 52:10 (1984), 831–834 | DOI | MR

[29] J. Le Roux, “Etude geometrique de la flexion, dans les deformations infinitesimaleg d'nn milien continu”, Ann. Ecole Norm. Super., 28 (1911), 523–579 | DOI | MR

[30] J. Le Roux, “Recherchesg sur la geometrie beg deformatios finies”, Ann. Ecole Norm. Super., 30 (1913), 193–245 | DOI | MR

[31] T.J.Jaramillo, A Generalization of the Energy Function of Elasticity Theory, Dissertation, Departament of Mathematics, University of Chicago, Chicago, 1929 | MR