Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_2_a3, author = {Evgeniya K. Guseva and Vasily I. Golubev and Igor B. Petrov and Victor P. Epifanov}, title = {Elastoplastic ice model with dynamic damage for simulation of non-linear processes during a low-speed impact}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {179--190}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a3/} }
TY - JOUR AU - Evgeniya K. Guseva AU - Vasily I. Golubev AU - Igor B. Petrov AU - Victor P. Epifanov TI - Elastoplastic ice model with dynamic damage for simulation of non-linear processes during a low-speed impact JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 179 EP - 190 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a3/ LA - en ID - JSFU_2025_18_2_a3 ER -
%0 Journal Article %A Evgeniya K. Guseva %A Vasily I. Golubev %A Igor B. Petrov %A Victor P. Epifanov %T Elastoplastic ice model with dynamic damage for simulation of non-linear processes during a low-speed impact %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 179-190 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a3/ %G en %F JSFU_2025_18_2_a3
Evgeniya K. Guseva; Vasily I. Golubev; Igor B. Petrov; Victor P. Epifanov. Elastoplastic ice model with dynamic damage for simulation of non-linear processes during a low-speed impact. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 179-190. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a3/
[1] S.T.Ince, A.Kumar, J.K.Paik, “A new constitutive equation on ice materials”, Ships Offshore Struct., 12:5 (2017), 610–623 | DOI
[2] I.Jordaan, “Some issues in ice mechanics”, Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, v. 8, 2015, OMAE2015-42042 | DOI
[3] M.Mokhtari, B.J.Leira, “A critical review of constitutive models applied to Ice-Crushing simulations”, Journal of Marine Science and Engineering, 12:6 (2024), 1021 | DOI
[4] A.V.Favorskaya, I.B.Petrov, “Calculation of seismic stability of buildings in the Far North using the Grid-Characteristic Method”, Lobachevskii Journal of Mathematics, 45:1 (2024), 213–222 | DOI | MR
[5] N.I.Khokhlov, I.B.Petrov, “Application of the grid-characteristic method for solving the problems of the propagation of dynamic wave disturbances in high-performance computing systems”, Proceedings of the Institute for System Programming of RAS, 31:6 (2019), 237–252 | DOI
[6] P.Barrette, J.Pond, I.Jordaan, “Ice damage and layer formation in small-scale indentation experiments”, Ice in the Environment, Proceedings of the 16th International Association for Hydraulic Engineering and Research (IAHR) International Symposium on Ice, 2002, 246–253
[7] W.Zhang, J.Li, L.Li, Q.Yang, “A systematic literature survey of the yield or failure criteria used for ice material”, Ocean Engineering, 254 (2022), 111360 | DOI
[8] A.M.Kovrizhnykh, “Plane Stress Equations for the Von Mises-Schleicher Yield Criterion”, Journal of Applied Mechanics and Technical Physics, 45 (2004), 894–901 | DOI
[9] M.Mokhtari, E.Kim, J.Amdahl, “A non-linear viscoelastic material model with progressive damage based on microstructural evolution and phase transition in polycrystalline ice for design against ice impact”, International Journal of Impact Engineering, 176 (2023), 104563 | DOI
[10] A.Favorskaya, V.Golubev, D.Grigorievyh, “Explanation the difference in destructed areas simulated using various failure criteria by the wave dynamics analysis”, Procedia Computer Science, 126 (2018), 1091–1099 | DOI
[11] V.P.Epifanov, “Ice destruction from impact interactions”, Akademiia Nauk SSSR Doklady, 284:3 (1985), 599–603 | DOI
[12] V.Novatskii, Theory of Elasticity, Mir, M., 1975 pp. (in Russian) | MR
[13] V.P.Berdennikov, “Izuchenie modulya uprugosti lda”, Trudi GGI, 7:61 (1948), 13–23 (in Russian)
[14] D.Grinevich, V.Buznik, G.Nuzhnyi, “Review of numerical methods for simulation of the ice deformation and fracture”, Proceedings of VIAM, 8 (2020), 109–122 (in Russian) | DOI
[15] H.Jang, S.Hwang, J.Yoon, J.H.Lee, “Numerical analysis of Ice-Structure impact: Validating material models and yield criteria for prediction of impact pressure”, Journal of Marine Science and Engineering, 12:2 (2024), 229 | DOI
[16] R.Sun, Z.Li, Y.Shi, “Numerical simulation of ice loading characteristics of ships in a wave-current environment in a broken ice area”, Journal of Physics Conference Series, 2756:1 (2024), 012030 | DOI
[17] Y.Song, L.Zhang, S.Li, Y.Li, “A Multi-Yield-Surface Plasticity State-Based Peridynamics Model and its Applications to Simulations of Ice-Structure Interactions”, Journal of Marine Science and Application, 22:3 (2023), 395–410 | DOI
[18] E.K.Guseva, V.I.Golubev, I.B.Petrov, “Linear, Quasi-Monotonic and Hybrid Grid-Characteristic Schemes for Hyperbolic Equations”, Lobachevskii J. Math., 44 (2023), 296–312 | DOI | MR
[19] O.T Bruhns, “The Prandtl-Reuss equations revisited”, Z. Angew. Math. Mech., 94:3 (2014), 187–202 | DOI | MR
[20] V.P.Epifanov, “Physical mechanisms of ice contact fracture”, Dokl. Phys., 52:1 (2007), 19–23 | DOI
[21] V.P.Epifanov, “Contact fracture behavior of ice”, Ice and Snow, 60:2 (2020), 274–284 (in Russian) | DOI