Novel results on positive solutions for nonlinear Caputo--Hadamard fractional Volterra--Fredholm integro differential equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 273-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish the existence and uniqueness of positive solutions for fractional Volterra–Fredholm integro-differential equation. This equation incorporates Caputo–Hadamard fractional derivatives and is defined with initial conditions. Our proof methodology relies on the Schauder fixed point theorem, the Banach contraction principle, upper and lower solution concepts, and their applications. To illustrate the significance of our theoretical findings, we also present a compelling example.
Keywords: fractional Volterra–Fredholm integro-differential equation, fixed point method.
Mots-clés : positive solutions
@article{JSFU_2025_18_2_a12,
     author = {Abdulrahman A. Sharif and Maha M. Hamood and Kirtiwant P. Ghadle},
     title = {Novel results on positive solutions for nonlinear {Caputo--Hadamard} fractional {Volterra--Fredholm} integro differential equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {273--282},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a12/}
}
TY  - JOUR
AU  - Abdulrahman A. Sharif
AU  - Maha M. Hamood
AU  - Kirtiwant P. Ghadle
TI  - Novel results on positive solutions for nonlinear Caputo--Hadamard fractional Volterra--Fredholm integro differential equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 273
EP  - 282
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a12/
LA  - en
ID  - JSFU_2025_18_2_a12
ER  - 
%0 Journal Article
%A Abdulrahman A. Sharif
%A Maha M. Hamood
%A Kirtiwant P. Ghadle
%T Novel results on positive solutions for nonlinear Caputo--Hadamard fractional Volterra--Fredholm integro differential equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 273-282
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a12/
%G en
%F JSFU_2025_18_2_a12
Abdulrahman A. Sharif; Maha M. Hamood; Kirtiwant P. Ghadle. Novel results on positive solutions for nonlinear Caputo--Hadamard fractional Volterra--Fredholm integro differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 273-282. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a12/

[1] B.Tellab, A.Boulfoul, A.Ghezal, “Existence and uniqueness results for nonlocal problem with fractional integro-differential equation in Banach Space”, Thai Journal of Mathematics, 21:1 (2023), 53–65 | MR

[2] A.A.Hamoud, A.A.Sharif, “Existence, Uniqueness and Stability Results for Nonlinear Neutral Fractional Volterra-Fredholm Integro-Differential Equations”, Discontinuity, Nonlinearity, and Complexity, 12:2 (2023), 381–398 | DOI | MR

[3] A.Lachouri, N.Gouri, “Existence and Uniqueness of Positive Solutions for a Class of Fractional Integro-Differential Equations”, Palestine Journal of Mathematics, 11:3 (2022), 167–174 | MR

[4] A.Ardjouni, A.Djoudi, “Existence and Uniqueness of Positive Solutions for First-Order Nonlinearliouville-Caputo Fractional Differential Equations”, Sao Paulo J. Math. Sci., 14 (2020), 381–390 | DOI | MR

[5] C.Wang, L.Gao, Q.Dou, “Existence and uniqueness of positive solution for a nonlinear multi-order fractional differential equations”, British Journal of Mathematics $\$ Computer Science, 4:15 (2014), 2137 | DOI | MR

[6] A.Lachouri, A.Ardjouni, A.Djoudi, “Positive Solutions of a Fractional Integro-Differential Equation With Integral Boundary Conditions”, Communications in Optimization Theory, 2020 (2020), 1–9

[7] F.Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010 | MR

[8] J.Klafter, S.C.Lim, R.Metzler, Fractional Dynamics in Physics Recent Advances, World Scientific, Singapore, 2011 | MR

[9] J.A.Tenreiro-Machado, V.Kiryakova, F.Mainardi, “Recent history of fractional calculus”, Commun. Nonlin. Sci. Numer. Sim., 16 (2011), 1140–1153 | DOI | MR

[10] S.Das, Functional Fractional Calculus, Springer-Verlag, Berlin–Heidelberg, 2011 | MR

[11] A.Hamoud, A.Sharif, K.Ghadle, “Existence and Stability of Solutions for a Nonlinear Fractional Volterra-Fredholm Integro-Differential Equation in Banach Spaces”, Journal of Mahani Mathematical Research Center, 2021, 2645–4505 | MR

[12] P.Butzer, A.Kilbas, J.Trujillo, “Compositions of Hadamard-Type Fractional Integration Operators and the Semigroup Property”, J. Math. Anal. Appl., 269 (2002), 387–400 | DOI | MR

[13] A.Kilbas, “Hadamard-type fractional calculus”, J. Korean Math. Soc., 38 (2001), 1191–1204 | MR

[14] C.Wang, H.Zhang, S.Wang, “Positive Solution of a Nonlinear Fractional Differential Equationinvolving Caputo Derivative”, Discrete Dyn. Nat. Soc., 2012 (2012), 425–408 | MR

[15] J.Wang, Y.Zhou, M.Medved, “Existence and Stability of Fractional Differential Equations Withhadamard Derivative”, Topological Methods in Nonlinear Analysis, 41:1 (2013), 113–133 | MR

[16] A.Ardjouni, A.Djoudi, “Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions”, Open J. Math. Anal., 3:1 (2019), 62–69 | DOI | MR

[17] A.A.Kilbas, H.M.Srivastava, J.J.Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006 | MR

[18] S.Das, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin–Heidelberg, 2008 | MR

[19] V.Lakshmikantham, A.S.Vatsala, “Basic Theory of Fractional Differential Equations”, Nonlinear Anal., 69 (2008), 2677–2682 | DOI | MR

[20] A.Ardjouni, “Existence and Uniqueness of Positive Solutions for Nonlinear Caputo-Hadamard Fractional Differential Equation”, Proyecciones Journal of Mathematics, 40:1 (2021), 139–152 | DOI | MR

[21] A.Lachouri, A.Ardjouni, A.Djoudi, “Existence and Ulam Stability Results for Nonlinear Hybrid Implicit Caputo Fractional Differential Equations”, Math. Morav., 24:1 (2020), 109–122 | DOI | MR

[22] K.S.Miller, B.Ross, An Introduction to the Fractional Calculus and Differential Equations, New York, 1993 | MR

[23] I.Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR

[24] A.A.Sharif, M.M.Hamood, K.P.Ghadle, “Existence and Uniqueness Theorems for Integro-Differential Equations With CAB-Fractional Derivative”, Acta Universitatis Apuleius, 72 (2022), 59–78 | DOI | MR

[25] A.Sharif, A.Hamoud, “On $\psi$-Caputo Fractional Nonlinear Volterra-Fredholm Integro-Differential Equations”, Discontinuity, Nonlinearity, and Complexity, 11:1 (2022), 97–106 | DOI

[26] X.Wang, L.Wang, Q.Zeng, “Fractional Differential Equations With Integral Boundary Conditions”, J. of Nonlinear Sci. Appl., 8 (2015), 309–314 | DOI | MR

[27] F.Jarad, T.Abdeljawad, D.Baleanu, “Caputo-Type Modification of the Hadamard Fractional Derivatives”, Adv. Diff. Equa., 142 (2012), 1–8 | DOI | MR

[28] D.R.Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics, London, New York, 1974 | MR

[29] D.Idczak, R.Kamocki, “On the Existence and Uniqueness and Formula for the Solution of R-L Fractional Cauchy Problem in $\mathbb{R}^n$”, Fract. Calc. Appl. Anal., 14:4 (2011), 538–553 | DOI | MR

[30] K.Balachandran, J.J.Trujillo, “The Nonlocal Cauchy Problem for Nonlinear Fractional Integrodifferential Equations in Banach Spaces”, Nonlinear Analysis: Th. Meth. Appl., 72 (2010), 4587–4593 | DOI | MR