Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 262-272

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X, m, \mathcal{H})$ be a hereditary $m$-space. A subset $A$ of $X$ is said to be $\mathcal{H}$-compact relative to $X$ if for every cover $\mathcal U$ of $A$ by $m$-open sets of $X$, there exists a finite subset $\mathcal{U}_0$ of $\mathcal{U}$ such that $A \setminus \cup\ \mathcal{U}_0 \in$ $\mathcal{H}$. We obtain several properties of these sets. And also, we define and investigate two kinds of strong forms of $\mathcal{H}$-compact relative to $X$.
Keywords: hereditary $m$-space, $\mathcal H$-compactness, strong $\mathcal H$-compactness, super $\mathcal H$-compactness.
@article{JSFU_2025_18_2_a11,
     author = {Ahmad Al-Omari and Takashi Noiri},
     title = {Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {262--272},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/}
}
TY  - JOUR
AU  - Ahmad Al-Omari
AU  - Takashi Noiri
TI  - Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 262
EP  - 272
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/
LA  - en
ID  - JSFU_2025_18_2_a11
ER  - 
%0 Journal Article
%A Ahmad Al-Omari
%A Takashi Noiri
%T Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 262-272
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/
%G en
%F JSFU_2025_18_2_a11
Ahmad Al-Omari; Takashi Noiri. Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 262-272. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/