Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 262-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X, m, \mathcal{H})$ be a hereditary $m$-space. A subset $A$ of $X$ is said to be $\mathcal{H}$-compact relative to $X$ if for every cover $\mathcal U$ of $A$ by $m$-open sets of $X$, there exists a finite subset $\mathcal{U}_0$ of $\mathcal{U}$ such that $A \setminus \cup\ \mathcal{U}_0 \in$ $\mathcal{H}$. We obtain several properties of these sets. And also, we define and investigate two kinds of strong forms of $\mathcal{H}$-compact relative to $X$.
Keywords: hereditary $m$-space, $\mathcal H$-compactness, strong $\mathcal H$-compactness, super $\mathcal H$-compactness.
@article{JSFU_2025_18_2_a11,
     author = {Ahmad Al-Omari and Takashi Noiri},
     title = {Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {262--272},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/}
}
TY  - JOUR
AU  - Ahmad Al-Omari
AU  - Takashi Noiri
TI  - Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 262
EP  - 272
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/
LA  - en
ID  - JSFU_2025_18_2_a11
ER  - 
%0 Journal Article
%A Ahmad Al-Omari
%A Takashi Noiri
%T Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 262-272
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/
%G en
%F JSFU_2025_18_2_a11
Ahmad Al-Omari; Takashi Noiri. Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 262-272. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/

[1] A.Al-Omari, T.Noiri, “Properties of $\gamma$$\cal H$-compact spaces with hereditary classes”, Atti Accad. Pelor. Peric. Cl. Sci. Fis. Mat. Natur., 98:2 (2020), A4-1-A4-11 | MR

[2] A.Al-Omari, T.Noiri, “Generalizations of Lindel$\ddot{o}$f spaces via hereditary classes”, Acta Univ. Sapientie Math., 13:2 (2021), 281–291 | MR

[3] A.Al-Omari, T.Noiri, “Properties of $\theta$-$\cal H$-compact sets in hereditary $m$-spaces”, Acta Comment. Univ. Tartu. Math., 26 (2022), 193–206 | MR

[4] A.Al-Omari, T.Noiri, “Super and strong $\gamma$$\cal H$-compactness in Hereditary $m$-spaces”, Commun. Korean Math. Soc., 39:3 (2024), 775–784 | DOI | MR

[5] $\acute{\rm A}$.Cs$\acute{\rm a}$sz$\acute{\rm a}$r, “Modification of generalized topologies via hereditary classes”, Acta Math. Hungar., 115:1-2 (2007), 29–35 | DOI | MR

[6] T.R.Hamlett, D.Jankovi$\acute{\rm c}$, “Compactness with respect to an ideal”, Boll. Un. Mat. Ital., 4:7 (1990), 849–861 | MR

[7] S.Jafari, T Noiri, V.Popa, “On $\theta$-compactness in ideal topological spaces”, Ann. Univ. Sci. Budapest, 52 (2009), 123–130 | MR

[8] D.Jankovi$\acute{\rm c}$, T.R.Hamlett, “New topologies from old via ideals”, Amer. Math. Monthly, 97:4 (1990), 295–310 | DOI | MR

[9] K.Kuratowski, Topology, v. I, Academic Press, New York, 1966 | MR

[10] H.Maki, K.C.Rao, A.Nagoor Gani, “On generalizing semi-open and preopen sets”, Pure Appl. Math. Sci., 49 (1999), 17–29 | MR

[11] R.L.Newcomb, Toplogies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967 | MR

[12] T.Noiri, “A unified theory of modifications of $g$-closed sets”, Rend. Circ. Mat. Palermo, 56:2 (2007), 171–184 | DOI | MR

[13] V.Popa, T.Noiri, “On $M$-continuous functions”, An. Univ. “Dunarea de Jos” Galati, Ser. Mat. Fiz. Mec. Teor., 43(23) (2000), 31–41

[14] V.Popa, T.Noiri, “A unified theory of weak continuity for functions”, Rend. Circ. Mat. Palermo, 51:2 (2002), 439–464 | DOI | MR

[15] A.Qahis, H.H.Al-Jarrah, T.Noiri, “Weakly $\mu$-compact via a herediatary class”, Bol. Soc. Paran. Mat., 39:3 (2021), 123–135 | DOI | MR

[16] D.V.Rančin, “Compactness modulo an ideal”, Soviet Math. Dokl., 13 (1972), 193–197

[17] R.Vaidyanathaswani, “The localization theory in set-topology”, Proc. Indian Acad. Sci., 20 (1945), 51–62 | DOI | MR