Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_2_a11, author = {Ahmad Al-Omari and Takashi Noiri}, title = {Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {262--272}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/} }
TY - JOUR AU - Ahmad Al-Omari AU - Takashi Noiri TI - Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 262 EP - 272 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/ LA - en ID - JSFU_2025_18_2_a11 ER -
%0 Journal Article %A Ahmad Al-Omari %A Takashi Noiri %T Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 262-272 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/ %G en %F JSFU_2025_18_2_a11
Ahmad Al-Omari; Takashi Noiri. Properties of $m\mathcal H$-compact sets in hereditary $m$-spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 262-272. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a11/
[1] A.Al-Omari, T.Noiri, “Properties of $\gamma$$\cal H$-compact spaces with hereditary classes”, Atti Accad. Pelor. Peric. Cl. Sci. Fis. Mat. Natur., 98:2 (2020), A4-1-A4-11 | MR
[2] A.Al-Omari, T.Noiri, “Generalizations of Lindel$\ddot{o}$f spaces via hereditary classes”, Acta Univ. Sapientie Math., 13:2 (2021), 281–291 | MR
[3] A.Al-Omari, T.Noiri, “Properties of $\theta$-$\cal H$-compact sets in hereditary $m$-spaces”, Acta Comment. Univ. Tartu. Math., 26 (2022), 193–206 | MR
[4] A.Al-Omari, T.Noiri, “Super and strong $\gamma$$\cal H$-compactness in Hereditary $m$-spaces”, Commun. Korean Math. Soc., 39:3 (2024), 775–784 | DOI | MR
[5] $\acute{\rm A}$.Cs$\acute{\rm a}$sz$\acute{\rm a}$r, “Modification of generalized topologies via hereditary classes”, Acta Math. Hungar., 115:1-2 (2007), 29–35 | DOI | MR
[6] T.R.Hamlett, D.Jankovi$\acute{\rm c}$, “Compactness with respect to an ideal”, Boll. Un. Mat. Ital., 4:7 (1990), 849–861 | MR
[7] S.Jafari, T Noiri, V.Popa, “On $\theta$-compactness in ideal topological spaces”, Ann. Univ. Sci. Budapest, 52 (2009), 123–130 | MR
[8] D.Jankovi$\acute{\rm c}$, T.R.Hamlett, “New topologies from old via ideals”, Amer. Math. Monthly, 97:4 (1990), 295–310 | DOI | MR
[9] K.Kuratowski, Topology, v. I, Academic Press, New York, 1966 | MR
[10] H.Maki, K.C.Rao, A.Nagoor Gani, “On generalizing semi-open and preopen sets”, Pure Appl. Math. Sci., 49 (1999), 17–29 | MR
[11] R.L.Newcomb, Toplogies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967 | MR
[12] T.Noiri, “A unified theory of modifications of $g$-closed sets”, Rend. Circ. Mat. Palermo, 56:2 (2007), 171–184 | DOI | MR
[13] V.Popa, T.Noiri, “On $M$-continuous functions”, An. Univ. “Dunarea de Jos” Galati, Ser. Mat. Fiz. Mec. Teor., 43(23) (2000), 31–41
[14] V.Popa, T.Noiri, “A unified theory of weak continuity for functions”, Rend. Circ. Mat. Palermo, 51:2 (2002), 439–464 | DOI | MR
[15] A.Qahis, H.H.Al-Jarrah, T.Noiri, “Weakly $\mu$-compact via a herediatary class”, Bol. Soc. Paran. Mat., 39:3 (2021), 123–135 | DOI | MR
[16] D.V.Rančin, “Compactness modulo an ideal”, Soviet Math. Dokl., 13 (1972), 193–197
[17] R.Vaidyanathaswani, “The localization theory in set-topology”, Proc. Indian Acad. Sci., 20 (1945), 51–62 | DOI | MR