Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_2_a1, author = {Oleg A. Zolotov and Alexandra I. Chusovitina and Viktor E. Zalizniak}, title = {Stability of a steady state of closed microecosystem <<algae -- heterotrophic bacteria>>}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {161--170}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/} }
TY - JOUR AU - Oleg A. Zolotov AU - Alexandra I. Chusovitina AU - Viktor E. Zalizniak TI - Stability of a steady state of closed microecosystem <> JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 161 EP - 170 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/ LA - en ID - JSFU_2025_18_2_a1 ER -
%0 Journal Article %A Oleg A. Zolotov %A Alexandra I. Chusovitina %A Viktor E. Zalizniak %T Stability of a steady state of closed microecosystem <> %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 161-170 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/ %G en %F JSFU_2025_18_2_a1
Oleg A. Zolotov; Alexandra I. Chusovitina; Viktor E. Zalizniak. Stability of a steady state of closed microecosystem <>. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 161-170. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/
[1] M.Yu.Saltykov, S.I.Bartsev, Y.P.Lankin, “Dependence of cosed ecosystem models' stability on the number of species”, Journal of Siberian Federal University. Biology, 4:2 (2011), 197–208 (in Russian) | DOI
[2] M.Yu.Saltykov, S.I.Bartsev, Yu.P.Lankin, “Stability of closed ecology life support systems (CELSS) models as dependent upon the properties of methabolism of the described species”, Advances in Space Research, 49 (2012), 223–229 | DOI
[3] S.Bartsev, A.Degermendzhi, “The evolutionary mechanism of formation of biosphere closure”, Mathematics, 11 (2023), 3218 | DOI
[4] V.E.Zalizniak, O.A.Zolotov, “Mathematical model of closed microecosystem «algae – heterotrophic bacteria»”, Mathematical Biology and Bioinformatics, 19:1 (2024), 96–111 (in Russian) | DOI
[5] Andrews J.F., “A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates”, Biotechnology and Bioengineering, 10 (1968), 707–723 | DOI
[6] S.Takano, B.J.Pawlowska, I.Gudelj, T.Yomo, S.Tsuru, “Density-dependent recycling promotes the long-term survival of bacterial populations during periods of starvation”, ASM Journals/mBio, 8 (2017), 02336–16 | DOI
[7] V.V.Zelenev, A.H.C. van Bruggen, A.M. Semeno, ““BACWAVE” a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil”, Microbial Ecology, 40 (2000), 260–272 | DOI
[8] B.G.Kovrov, G.N.Fishtein, “A distribution of biomass in synthetic closed microbial biocenosis depending on a species structure”, Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR. Seriya biologicheskaya, 5:1 (1980), 35–40 (in Russian)
[9] A.A.Paul, D.A.T.Southgate, McCance and Widdowsons' The Composition of Foods, Stationery Office Books, London, 1978
[10] A. M.Lyapunov, The General Problem of the Stability of Motion, Gosudarstvennoe Izdatel'stvo Tehniko-Teoreticheskoj Literatur, M.–L., 1950 pp. (in Russian) | MR