Stability of a steady state of closed microecosystem -- heterotrophic bacteria>>
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 161-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two models of closed microecosystem "algae–heterotrophic bacteria" are considered in this paper. Mathematical models are the Cauchy problem for system of non-linear ordinary differential equations. To develop models the Liebig's law of the minimum is consistently used for both specific rate of biomass growth and specific mortality rate of algae and bacteria cells. To describe the specific rate of substrate utilization by algae and bacteria the Andrew model (substrate inhibition) is used. It is assumed that carbon and nitrogen are main biogenic elements. Both models predict stationary state of microecosystem «Clorella vulgaris Pseudomonas sp.» that is in reasonable agreement with experimental data. Stability of the obtained stationary state is examined by means of Lyapunov's indirect method and Lyapunov's direct method based on the proposed form of Lyapunov function.
Keywords: mathematical modelling of ecosystems, closed ecosystem, algae, heterotrophic bacteria, stationary state, stability, Lyapunov indirect method, Lyapunov direct method.
@article{JSFU_2025_18_2_a1,
     author = {Oleg A. Zolotov and Alexandra I. Chusovitina and Viktor E. Zalizniak},
     title = {Stability of a steady state of closed microecosystem <<algae -- heterotrophic bacteria>>},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/}
}
TY  - JOUR
AU  - Oleg A. Zolotov
AU  - Alexandra I. Chusovitina
AU  - Viktor E. Zalizniak
TI  - Stability of a steady state of closed microecosystem <>
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 161
EP  - 170
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/
LA  - en
ID  - JSFU_2025_18_2_a1
ER  - 
%0 Journal Article
%A Oleg A. Zolotov
%A Alexandra I. Chusovitina
%A Viktor E. Zalizniak
%T Stability of a steady state of closed microecosystem <>
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 161-170
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/
%G en
%F JSFU_2025_18_2_a1
Oleg A. Zolotov; Alexandra I. Chusovitina; Viktor E. Zalizniak. Stability of a steady state of closed microecosystem <>. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 2, pp. 161-170. http://geodesic.mathdoc.fr/item/JSFU_2025_18_2_a1/

[1] M.Yu.Saltykov, S.I.Bartsev, Y.P.Lankin, “Dependence of cosed ecosystem models' stability on the number of species”, Journal of Siberian Federal University. Biology, 4:2 (2011), 197–208 (in Russian) | DOI

[2] M.Yu.Saltykov, S.I.Bartsev, Yu.P.Lankin, “Stability of closed ecology life support systems (CELSS) models as dependent upon the properties of methabolism of the described species”, Advances in Space Research, 49 (2012), 223–229 | DOI

[3] S.Bartsev, A.Degermendzhi, “The evolutionary mechanism of formation of biosphere closure”, Mathematics, 11 (2023), 3218 | DOI

[4] V.E.Zalizniak, O.A.Zolotov, “Mathematical model of closed microecosystem «algae – heterotrophic bacteria»”, Mathematical Biology and Bioinformatics, 19:1 (2024), 96–111 (in Russian) | DOI

[5] Andrews J.F., “A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates”, Biotechnology and Bioengineering, 10 (1968), 707–723 | DOI

[6] S.Takano, B.J.Pawlowska, I.Gudelj, T.Yomo, S.Tsuru, “Density-dependent recycling promotes the long-term survival of bacterial populations during periods of starvation”, ASM Journals/mBio, 8 (2017), 02336–16 | DOI

[7] V.V.Zelenev, A.H.C. van Bruggen, A.M. Semeno, ““BACWAVE” a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil”, Microbial Ecology, 40 (2000), 260–272 | DOI

[8] B.G.Kovrov, G.N.Fishtein, “A distribution of biomass in synthetic closed microbial biocenosis depending on a species structure”, Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR. Seriya biologicheskaya, 5:1 (1980), 35–40 (in Russian)

[9] A.A.Paul, D.A.T.Southgate, McCance and Widdowsons' The Composition of Foods, Stationery Office Books, London, 1978

[10] A. M.Lyapunov, The General Problem of the Stability of Motion, Gosudarstvennoe Izdatel'stvo Tehniko-Teoreticheskoj Literatur, M.–L., 1950 pp. (in Russian) | MR