Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_1_a9, author = {Alexey V. Rukavishnikov}, title = {Weighted analogue of {LBB} conditions for solving the {Stokes} problem with model boundary conditions in a domain with singularity}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {91--99}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a9/} }
TY - JOUR AU - Alexey V. Rukavishnikov TI - Weighted analogue of LBB conditions for solving the Stokes problem with model boundary conditions in a domain with singularity JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 91 EP - 99 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a9/ LA - en ID - JSFU_2025_18_1_a9 ER -
%0 Journal Article %A Alexey V. Rukavishnikov %T Weighted analogue of LBB conditions for solving the Stokes problem with model boundary conditions in a domain with singularity %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 91-99 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a9/ %G en %F JSFU_2025_18_1_a9
Alexey V. Rukavishnikov. Weighted analogue of LBB conditions for solving the Stokes problem with model boundary conditions in a domain with singularity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 91-99. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a9/
[1] D.Boffi, F.Brezzi, M.Fortin, Mixed Finite Element Methods and Applications, Springer, Berlin–Heidelberg, 2013 | MR | Zbl
[2] R.Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1984 | MR | Zbl
[3] P.M.Gresho, R.L.Sani, “On pressure boundary conditions for incompressible Navier-Stokes equations”, Internat J. Numer. Methods Fluids, 7 (1987), 1111–1145 | DOI | Zbl
[4] M.A.Ol'shanskii, “On the Stokes problem with model boundary conditions”, Sb. Math., 188:4 (1997), 603–620 | DOI | MR | Zbl
[5] M.Dauge, “Stationary Stokes and Navier-Stokes system on two- or three-dimensional domains with corners. I. Linearized equations”, SIAM J. Math. Anal., 20 (1989), 74–97 | DOI | MR | Zbl
[6] V.Girault, P.A.Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986 | MR | Zbl
[7] V.A.Rukavishnikov, “Differential properties of an $R_{\nu}$-generalized solution of the Dirichlet problem”, Soviet Mathematics Doklady, 40 (1990), 653–655 | MR | Zbl
[8] V.A.Rukavishnikov, A.O.Mosolapov, E.I.Rukavishnikova, “Weighted finite element method for elasticity problem with a crack”, Comput. Struct., 243 (2021), 106400 | DOI | MR
[9] V.A.Rukavishnikov, E.I.Rukavishnikova, “Weighted finite element method and body of optimal parameters for elasticity problem with singularity”, Comput. Math. Appl., 151 (2023), 408–417 | DOI | MR | Zbl
[10] V.A.Rukavishnikov, A.V.Rukavishnikov, “Theoretical analysis and construction of numerical method for solving the Navier-Stokes equations in rotation form with corner singularity”, J. Comput. Appl. Math., 429 (2023), 115218 | DOI | MR | Zbl
[11] V.A.Rukavishnikov, A.V.Rukavishnikov, “Weighted finite element method for the Stokes problem with corner singularity”, J. Comput. Appl. Math., 341 (2018), 144–156 | DOI | MR | Zbl
[12] V.A.Rukavishnikov, A.V.Rukavishnikov, “The method of numerical solution of the one stationary hydrodynamics problem in convective form in L-shaped domain”, Comput. Res. Model., 12 (2020), 1291–1306 (in Russian) | DOI
[13] V.A.Rukavishnikov, A.V.Rukavishnikov, “On the properties of operators of the Stokes problem with corner singularity in nonsymmetric variational formulation”, Mathematics, 10:6 (2022), 889 | DOI
[14] A.V.Rukavishnikov, V.A.Rukavishnikov, “New numerical approach for the steady-state Navier–Stokes equations with corner singularity”, Int. J. Comput. Methods, 19:9 (2022), 2250012 | DOI | MR | Zbl