Solving cauchy problem for elasticity equations in a plane dynamic case
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations of elasticity in a plane dynamic case are considered in this paper. The system of equations is replaced by system of first-order differential equations with the same solution. The solution-equivalent system is group fibration of the original system of equations. It is a combination of the resolving and automorphic systems. Special classes of conservation laws are found for the resolving system of equations. These laws allow one to find the solution of the original equations in the form of surface integrals over the boundary of an elastic body.
Keywords: equations of elasticity in a plane dynamic case, Cauchy problem, conservation laws
Mots-clés : exact solutions.
@article{JSFU_2025_18_1_a7,
     author = {Sergei I. Senashov and Irina L. Savostyanova and Olga N. Cherepanova},
     title = {Solving cauchy problem for elasticity equations in a plane dynamic case},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a7/}
}
TY  - JOUR
AU  - Sergei I. Senashov
AU  - Irina L. Savostyanova
AU  - Olga N. Cherepanova
TI  - Solving cauchy problem for elasticity equations in a plane dynamic case
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 71
EP  - 80
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a7/
LA  - en
ID  - JSFU_2025_18_1_a7
ER  - 
%0 Journal Article
%A Sergei I. Senashov
%A Irina L. Savostyanova
%A Olga N. Cherepanova
%T Solving cauchy problem for elasticity equations in a plane dynamic case
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 71-80
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a7/
%G en
%F JSFU_2025_18_1_a7
Sergei I. Senashov; Irina L. Savostyanova; Olga N. Cherepanova. Solving cauchy problem for elasticity equations in a plane dynamic case. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a7/

[1] V.Novatsky, Theory of elasticity, Nauka, Novosibirsk, 1983

[2] N.I.Ostrosablin, “Symmetry operators and general solutions of equations of linear theory of elasticity”, Applied Mechanics and Technical Physics, 36:5 (1995), 98–104 | DOI | MR | Zbl

[3] N.I Ostrosablin, “General solutions and reduction of systems of equations of linear theory of elasticity to a diagonal form”, Applied Mechanics and Technical Physics, 34:5 (1993), 112–122 | MR | Zbl

[4] S.L.Sobolev, Equations of mathematical physics, State Publishing House of Technical and Theoretical Literature, M., 1956

[5] L.V.Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978 | MR | Zbl

[6] B.D.Annin, V.O.Bytev, S.I.Senashov, Group properties of elasticity and plasticity equations, Nauka, Novosibirsk, 1983 | MR

[7] S.I.Senashov, I.L.Savostyanova, “On elastic torsion around three axes”, Siberian Journal of Industrial Mathematics, 24:1 (2021), 120–125 (in Russian) | DOI | MR | Zbl

[8] B.D.Annin, V.D.Bondar, S.I.Senashov, “Determination of elastic and plastic deformation regions in the problem of uniaxial tension of a plate weakened by holes”, Siberian Journal of Industrial Mathematics, 23:1 (2020), 11–16 (in Russian)

[9] O.V.Gomonova, S.I.Senashov, “Group analysis and exact solutions of the equations of plane deformation of an incompressible nonlinear elastic body”, Applied Mechanics and Technical Physics, 62:1 (2021), 179–186 (in Russian) | DOI | MR | Zbl

[10] O.V.Gomonova, S.I.Senashov, O.N.Cherepanova, “Group analysis of ideal plasticity equations”, Applied Mechanics and Technical Physics, 62:5 (2021), 208–216 (in Russian) | MR | Zbl

[11] V.I.Smirnov, Course of Higher Mathematics, Nauka, M., 1981 | MR

[12] V.Yu.Prudnikov, Yu.A.Chirkunov, “Group bundle of Lame equations”, Solid State Mechanics, 22:3 (2009), 471–477 (in Russian) | MR