On the Aris-Amundson model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 51-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of the real roots of the system of transcendental Aris–Amundson equations. It is shown that the number of real roots is related to the number of real roots of some entire function (resultant). The number of complex roots is investigated.
Keywords: systems of transcendental equations, resultant, simple root.
@article{JSFU_2025_18_1_a5,
     author = {Alexander M. Kytmanov and Olga V. Khodos},
     title = {On the {Aris-Amundson} model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {51--58},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a5/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Olga V. Khodos
TI  - On the Aris-Amundson model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 51
EP  - 58
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a5/
LA  - en
ID  - JSFU_2025_18_1_a5
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Olga V. Khodos
%T On the Aris-Amundson model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 51-58
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a5/
%G en
%F JSFU_2025_18_1_a5
Alexander M. Kytmanov; Olga V. Khodos. On the Aris-Amundson model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a5/

[1] F.R.Gantmakher, Theory of Matrices, Chelsea Pub. Co, New York, 1959 | MR

[2] M.G.Krein, M.A.Naimark, “The Method of Symmetric and Hermitian Forms in the Theory of the Separation of the Roots of Algebraic Equation”, Linear Multilin. Algebra, 10:4 (1981), 265–308 | DOI | MR | Zbl

[3] E.I.Jury, Inners and stability of dynamic systems, Wiley, New York-London-Sydney-Toronto, 1974 | MR | Zbl

[4] N.G.Chebotarev, Work Collection, v. 2, AN SSSR, M.-L., 1949 | MR

[5] A.M.Kytmanov, O.V.Khodos, “On localization of the zeros of an entire function of finite order of growth”, Journal Complex Analysis and Operator Theory, 11 (2017), 393–416 | DOI | MR | Zbl

[6] L.A.Ajzenberg, V.A.Bolotov, A.K.Tsikh, “On the solution of systems of nonlinear algebraic equations using the multidimensional logarithmic residue. On the solvability in radicals”, Sov. Math., Dokl., 21 (1980), 645–648 | MR | Zbl

[7] N.N.Tarkhanov, “Calculation of the Poincare index”, Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 9, 47–50 (in Russian) | MR | Zbl

[8] A.M.Kytmanov, “On the number of real roots of systems of equations”, Soviet Math. (Iz. VUZ), 35:6 (1991), 19–22 | MR | Zbl

[9] A.M.Kytmanov, O.V.Khodos, “On the roots of systems of transcendental equations”, Probl. Anal., 13:1 (2024), 37–49 | DOI | MR | Zbl

[10] V.Bykov, A.Kytmanov, M.Lazman, M.Passare (ed.), Elimination Methods in Polynomial Computer Algebra, Springer science+business media, Dordrecht, 1998 | MR

[11] A.M.Kytmanov, Algebraic and trascendental systems of equations and transcendental systems of equations, Siberian Federal University, Krasnoyarsk, 2019

[12] V.I.Bykov, S.B.Tsybenova, Nonlinear models of chemical kinetics, KRASAND, M., 2011

[13] O.V.Khodos, “On Some System of Non-algebraic Equation in $\mathbb C^n$”, J. Sib. Fed. Univ. Math. Phys., 7:4 (2014), 455–465 | DOI | Zbl

[14] A.M.Kytmanov, O.V.Khodos, “On the Real Roots of Systems of Transcendental Equations”, J. Sib. Fed. Univ. Math. Phys., 17:3 (2024), 328–335 | MR

[15] A.I.Markushevich, Theory of Functions of a Complex Variable, v. 2, Prentice-Hall, 1965 | MR