On spectra and minimal polynomials in finite semifields
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the notion of a one-side-ordered minimal polynomial to investigations in finite semifields. A proper finite semifield has non-associative multiplication, that leads to the anomalous properties of its left and right spectra. We obtain the sufficient condition when the right (left) order of a semifield element is a divisor of the multiplicative loop order. The interrelation between the minimal polynomial of non-zero element and its right (left) order is described using the spread set. This relationship fully explains the most interesting and anomalous examples of small-order semifields.
Keywords: semifield, right order, right spectrum, right-ordered minimal polynomial, spread set.
@article{JSFU_2025_18_1_a4,
     author = {Olga V. Kravtsova and Ilya K. Kuzmin},
     title = {On spectra and minimal polynomials in finite semifields},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a4/}
}
TY  - JOUR
AU  - Olga V. Kravtsova
AU  - Ilya K. Kuzmin
TI  - On spectra and minimal polynomials in finite semifields
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 41
EP  - 50
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a4/
LA  - en
ID  - JSFU_2025_18_1_a4
ER  - 
%0 Journal Article
%A Olga V. Kravtsova
%A Ilya K. Kuzmin
%T On spectra and minimal polynomials in finite semifields
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 41-50
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a4/
%G en
%F JSFU_2025_18_1_a4
Olga V. Kravtsova; Ilya K. Kuzmin. On spectra and minimal polynomials in finite semifields. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a4/

[1] D.R.Hughes, F.C.Piper, Projective planes, Springer–Verlag New–York Inc., 1973 | MR | Zbl

[2] N.L.Johnson, V.Jha, M.Biliotti, Handbook of finite translation planes, Pure and applied mathematics, Chapman/CPC, 2007 | MR | Zbl

[3] V.M.Levchuk, O.V.Kravtsova, “Problems on structure of finite quasifields and projective translation planes”, Lobachevskii Journal of Mathematics, 38:4 (2017), 688–698 | DOI | MR | Zbl

[4] A.N.Grishkov, A.V.Zavarnitsyn, “Lagrange's theorem for Moufang loops”, Math. Proc. Phil. Soc., 139 (2005), 41–57 | DOI | MR | Zbl

[5] O.V.Kravtsova, “Minimal polynomials in finite semifields”, Journal of Siberian Federal University. Mathematics $\$ Phisics, 11:5 (2018), 588–596 | DOI | MR | Zbl

[6] O.V.Kravtsova, D.S.Skok, “The spread set method for the construction of finite quasifields”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 164–181 | DOI | MR

[7] O.V.Kravtsova, “Minimal proper quasifields with additional conditions”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:1 (2020), 104–113 | DOI | MR | Zbl

[8] O.V.Kravtsova, V.S.Loginova, “Questions of the structure of finite Hall quasifields”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 1, 2024, 128–141 | DOI | MR

[9] R.Lidl, G.Pilz, Applied Abstract Algebra, Springer–Verlag, New York, 1984 | MR | Zbl

[10] O.V.Kravtsova, I.V.Sheveleva, “On some 3-primitive projective planes”, Chebyshevskii Sb., 20:3 (2019), 316–332 | DOI | MR | Zbl

[11] S.D.Cohen, M.J.Ganley, “Commutative semifields, two dimensional over their middle nuclei”, Journal of Algebra, 75:2 (1982), 373–385 | DOI | MR | Zbl

[12] O.V.Kravtsova, “Semifield planes admitting the quaternion group $Q_8$”, Algebra and Logic, 59:1 (2020), 71–81 | DOI | MR | Zbl