Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_1_a13, author = {Mikhail E. Shmelev and Anna K. Kravchenko and Vadim V. Kumeiko}, title = {A novel protocol for cell nanomechanical assay combined with rapid protein profiling via {AFM-LSM} pattern colocalization}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {130--143}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a13/} }
TY - JOUR AU - Mikhail E. Shmelev AU - Anna K. Kravchenko AU - Vadim V. Kumeiko TI - A novel protocol for cell nanomechanical assay combined with rapid protein profiling via AFM-LSM pattern colocalization JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 130 EP - 143 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a13/ LA - en ID - JSFU_2025_18_1_a13 ER -
%0 Journal Article %A Mikhail E. Shmelev %A Anna K. Kravchenko %A Vadim V. Kumeiko %T A novel protocol for cell nanomechanical assay combined with rapid protein profiling via AFM-LSM pattern colocalization %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 130-143 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a13/ %G en %F JSFU_2025_18_1_a13
Mikhail E. Shmelev; Anna K. Kravchenko; Vadim V. Kumeiko. A novel protocol for cell nanomechanical assay combined with rapid protein profiling via AFM-LSM pattern colocalization. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 130-143. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a13/
[1] M.Radmacher, “Studying the Mechanics of Cellular Processes by Atomic Force Microscopy”, Methods in Cell Biology, Academic Press (Cell Mechanics), 2007, 347–372 | DOI
[2] G.Zhou, et al., “Cells nanomechanics by atomic force microscopy: focus on interactions at nanoscale”, Advances in Physics: X, 6:1 (2021) | DOI
[3] P.Roca-Cusachs, V.Conte, X.Trepat, “Quantifying forces in cell biology”, Nature Cell Biology, 19:7 (2017), 742–751 | DOI
[4] M.Skamrahl, et al., “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM-FRAP”, Small (Weinheim an Der Bergstrasse, Germany), 15:40 (2019), e1902202 | DOI
[5] M.Cai, et al., “Cell membrane sample preparation method of combined AFM and dSTORM analysis”, Biophysics Reports, 8:4 (2022), 183–192 | DOI
[6] V.M.Farniev, et al., “Nanomechanical and Morphological AFM Mapping of Normal Tissues and Tumors on Live Brain Slices Using Specially Designed Embedding Matrix and Laser-Shaped Cantilevers”, Biomedicines, 10:7 (2022), 1742 | DOI
[7] M.Krieg, et al., “Atomic force microscopy-based mechanobiology”, Nature Reviews Physics, 1:1 (2019), 41–57 | DOI
[8] M.E.Shmelev, et al., “Nanomechanical Signatures in Glioma Cells Depend on CD44 Distribution in IDH1 Wild-Type but Not in IDH1R132H Mutant Early-Passage Cultures”, International Journal of Molecular Sciences, 24:4 (2023), 4056 | DOI
[9] M.Pashirzad, et al., “Role of Wnt3a in the pathogenesis of cancer, current status and prospective”, Molecular Biology Reports, 46:5 (2019), 5609–5616 | DOI
[10] F.Lu, et al., “miR-497/Wnt3a/c-jun feedback loop regulates growth and epithelial-to-mesenchymal transition phenotype in glioma cells”, International Journal of Biological Macromolecules, 120:Pt A (2018), 985–991 | DOI | MR
[11] Y.Meng, F.-R.Shang, Y.-L.Zhu, “MiR-491 functions as a tumor suppressor through Wnt3a/$\beta$–catenin signaling in the development of glioma”, European Review for Medical and Pharmacological Sciences, 23:24 (2019), 10899–10907 | DOI
[12] S.Patra, et al., “Dysregulation of histone deacetylases in carcinogenesis and tumor progression: a possible link to apoptosis and autophagy”, Cellular and molecular life sciences: CMLS, 46:5 (2019), 3263–3282 | DOI
[13] J.Shan, et al., “Identification of a specific inhibitor of the dishevelled PDZ domain”, Biochemistry, 44:47 (2005), 15495–15503 | DOI
[14] Y.Wang, et al., “hsa-miR-216a-3p regulates cell proliferation in oral cancer via the Wnt3a/$\beta$-catenin pathway”, Molecular Medicine Reports, 27:6 (2023), 128 | DOI
[15] D.Matias, et al., “GBM-Derived Wnt3a Induces M2-Like Phenotype in Microglial Cells Through Wnt/$\beta$-Catenin Signaling”, Molecular Neurobiology, 56:2 (2019), 1517–1530 | DOI | MR
[16] N.Mullin, J.K.Hobbs, “A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy”, Review of Scientific Instruments, 85:11 (2014), 113703 | DOI
[17] B.V.Derjaguin, V.M.Muller, Yu.P.Toporov, “Effect of contact deformations on the adhesion of particles”, Journal of Colloid and Interface Science, 53:2 (1975), 314–326 | DOI
[18] S.V.Costes, et al., “Automatic and quantitative measurement of protein-protein colocalization in live cells”, Biophysical journal, 86:6 (2004), 3993–4003 | DOI
[19] K.W.Dunn, M.M.Kamocka, J.H.McDonald, “A practical guide to evaluating colocalization in biological microscopy”, American Journal of Physiology-Cell Physiology, 300:4 (2011), 723–742 | DOI
[20] I.Jalilian, et al., “Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton”, PloS One, 10:5 (2015), e0126214 | DOI
[21] L.Simone, et al., “AQP4 Aggregation State Is a Determinant for Glioma Cell Fate”, Cancer Research, 79:9 (2019), 2182–2194 | DOI
[22] J.H.McDonald, K.W.Dunn, “Statistical tests for measures of colocalization in biological microscopy”, Journal of Microscopy, 252:3 (2013), 295–302 | DOI
[23] N.Kaur, et al., “Wnt3a mediated activation of Wnt/$\beta$–catenin signaling promotes tumor progression in glioblastoma”, Molecular and Cellular Neurosciences, 54 (2013), 44–57 | DOI
[24] G.Riitano, et al., “LRP6 mediated signal transduction pathway triggered by tissue plasminogen activator acts through lipid rafts in neuroblastoma cells”, Journal of Cell Communication and Signaling, 14:3 (2020), 315–323 | DOI
[25] Y.Chen, et al., “Spectral analysis of irregular roughness artifacts measured by atomic force microscopy and laser scanning microscopy”, Microscopy and Microanalysis: The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 20:6 (2014), 1682–1691 | DOI
[26] K.Meller, C.Theiss, “Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells”, Ultramicroscopy, 106:4-5 (2006), 320–325 | DOI
[27] A.V.Moskalenko, et al., “Single protein molecule mapping with magnetic atomic force microscopy”, Biophysical Journal, 98:3 (2010), 478–487 | DOI
[28] K.Szafranska, et al., “From fixed-dried to wet-fixed to live — comparative super-resolution microscopy of liver sinusoidal endothelial cell fenestrations”, Nanophotonics, 11:10 (2022), 2253–2270 | DOI