Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2025_18_1_a10, author = {Vitaly A. Demin and Maxim I. Petukhov}, title = {Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {100--108}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2025}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/} }
TY - JOUR AU - Vitaly A. Demin AU - Maxim I. Petukhov TI - Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2025 SP - 100 EP - 108 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/ LA - en ID - JSFU_2025_18_1_a10 ER -
%0 Journal Article %A Vitaly A. Demin %A Maxim I. Petukhov %T Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2025 %P 100-108 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/ %G en %F JSFU_2025_18_1_a10
Vitaly A. Demin; Maxim I. Petukhov. Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/
[1] J.L.Jackel, C.E.Rice, J.J.Veselka, “Proton exchange for high-index waveguides in LiNbO$_3$”, Appl. Phys. Lett., 41 (1982), 607–608 | DOI
[2] J.L.Jackel, “Proton exchange: past, present, and future”, Proc. SPIE, 1583 (1991), 54–63 | DOI | MR
[3] M.Kuneva, “Optical waveguides obtained via proton exchange technology in LiNbO$_3$ and LiTaO$_3$ – a short review”, International Journal of Scientific Research in Science and Technology, 2 (2016), 40–50
[4] S.S.Mushinsky, A.M.Minkin, I.V.Petukhov et al., “Water Effect on Proton Exchange of X-cut Lithium Niobate in the Melt of Benzoic Acid”, Ferroelectrics, 476 (2015), 84–93 | DOI
[5] V.I.Kichigin, I.V.Petukhov et al., “Structure and properties of proton exchange waveguides on Z cut of lithium niobate crystal fabricated in molten benzoic acid with the addition of lithium benzoate”, International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2012, 238–241
[6] A.V.Sosunov, S.S.Mushinsky et al., “Evalua-tion of applicability of lithium niobate crystals Z-cut with predetermined impurity distribution for manufacturing of proton-exchanged waveguides”, Bulletin of Perm University. Physics, 2 (2017), 69–73 | DOI
[7] S.T.Vohra, A.R.Mickelson, S.E.Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO$_3$ channel waveguides”, J. Appl. Phys., 66 (1989), 5161–5174 | DOI
[8] M.De Micheli, J.Botineau, S.Neveu, P.Sibillot, D.B.Ostrowsky, “Independent control of index and profiles in proton-exchanged lithium niobate guides”, Optics Lett., 8 (1983), 114–115 | DOI
[9] Yu.N.Korkishko, V.A.Fedorov, “Structural phase diagram of H$_x$Li$_{1-x}$NbO$_3$ waveguides: the correlation between optical and structural properties”, IEEE J. Sel. Top. Quantum Electron, 2 (1996), 187–196 | DOI
[10] I.V.Petukhov, V.I.Kichigin, S.S.Mushinskii, D.I.Sidorov, O.R.Semenova, “The influence of plasma treatment of lithium niobate crystal surface on the proton exchange process in molten benzoic acid”, Bulletin of Perm University. Chemistry, 9 (2019), 371–379 | DOI
[11] A.A.Kozlov, U.O.Salgaeva, V.A.Zhuravlev, A.B.Volyntsev, “The study of the kinetics of thin-film lithium niobate reactive ion etching in a fluorine-containing plasma”, Bulletin of Perm University. Physics, 1 (2024), 56–71 | DOI
[12] Y.Li, T.Lan, D.Yang, Z.Wang, “Fabrication of ridge optical waveguide in thin film lithium niobate by proton exchange and wet etching”, Optical Materials, 120 (2021), 111433 | DOI
[13] V.A.Demin, M.I.Petukhov, R.S.Ponomarev, “An ionic boundary layer near the lithium niobate surface in the proton exchange process”, Surface Engineering and Applied Electrochemistry, 59 (2023), 321–328 | DOI
[14] V.A.Demin, M.I.Petukhov, R.S.Ponomarev, M.Kuneva, “Effect of Permittivity on the Ionic Boundary Layer upon Protonation of Lithium Niobate”, Journal of Siberian Federal University. Mathematics and Physics, 16:5 (2023), 611–619
[15] V.A.Demin, M.I.Petukhov, “Application of multiple scales method to the problem about characteristics of the ionic layer near the surface of lithium niobate crystal in a benzoic acid melt”, Microgravity Science and Technology, 36 (2024), 33 | DOI
[16] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, v. 6, Butterworth-Heinemann, 1987 | MR
[17] F.Pontiga, A.Castellanos, “Physical mechanisms of instability in a liquid layer subjected to an electric field and a thermal gradient”, Phys. Fluids, 6 (1994), 1684 | DOI | Zbl
[18] E.A.Demekhin, N.V.Nikitin, V.S.Shelistov, “Direct numerical simulation of electrokinetic instability and transition to chaotic motion”, Phys. Fluids, 25 (2013), 122001 | DOI
[19] G.I.Skanavi, Fizika dielektrikov. Oblast' slabyh polej, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, M., 1949 (in Russian)
[20] I.K.Kikoin, Tablicy fizicheskih velichin, Atomizdat, M., 1976 (in Russian)
[21] G.Z.Gershuni, E.M.Zhukhovitskii, Convective stability of incompressible fluids, Keter Publishing House, Jerusalem, 1976
[22] P.Roache, Computational fluid dynamics, Hermosa publishers, Albuquerque, 1976 | MR