Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 100-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to a numerical study of the transport of proton exchange reaction products in a benzoic acid melt after the interaction of its molecules with a lithium niobate crystal. Due to dissociative adsorption from the surface of the substrate, positive lithium ions and negative benzoate ions diffuse into the acid. The transfer of these reaction products is described using equations in the continuos media approximation. The mathematical model takes into account the diffusion and electromigration mechanisms of transport, as well as the recombination of ions. As a result of the solution, stationary distributions of ion concentrations are obtained. Due to the large difference in the kinetics of the reaction products, benzoate ions are grouped predominantly near the substrate, while lithium ions tend to move away from it to a much greater distance. The work shows that the size of the computational domain approaches the size of the reactor working space when the ions of both types form boundary layers.
Keywords: proton exchange, boundary layer, numerical simulation.
@article{JSFU_2025_18_1_a10,
     author = {Vitaly A. Demin and Maxim I. Petukhov},
     title = {Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/}
}
TY  - JOUR
AU  - Vitaly A. Demin
AU  - Maxim I. Petukhov
TI  - Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 100
EP  - 108
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/
LA  - en
ID  - JSFU_2025_18_1_a10
ER  - 
%0 Journal Article
%A Vitaly A. Demin
%A Maxim I. Petukhov
%T Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 100-108
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/
%G en
%F JSFU_2025_18_1_a10
Vitaly A. Demin; Maxim I. Petukhov. Diffusion and electromigration of ions -- products of the proton exchange reaction in a benzoic acid melt. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a10/

[1] J.L.Jackel, C.E.Rice, J.J.Veselka, “Proton exchange for high-index waveguides in LiNbO$_3$”, Appl. Phys. Lett., 41 (1982), 607–608 | DOI

[2] J.L.Jackel, “Proton exchange: past, present, and future”, Proc. SPIE, 1583 (1991), 54–63 | DOI | MR

[3] M.Kuneva, “Optical waveguides obtained via proton exchange technology in LiNbO$_3$ and LiTaO$_3$ – a short review”, International Journal of Scientific Research in Science and Technology, 2 (2016), 40–50

[4] S.S.Mushinsky, A.M.Minkin, I.V.Petukhov et al., “Water Effect on Proton Exchange of X-cut Lithium Niobate in the Melt of Benzoic Acid”, Ferroelectrics, 476 (2015), 84–93 | DOI

[5] V.I.Kichigin, I.V.Petukhov et al., “Structure and properties of proton exchange waveguides on Z cut of lithium niobate crystal fabricated in molten benzoic acid with the addition of lithium benzoate”, International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2012, 238–241

[6] A.V.Sosunov, S.S.Mushinsky et al., “Evalua-tion of applicability of lithium niobate crystals Z-cut with predetermined impurity distribution for manufacturing of proton-exchanged waveguides”, Bulletin of Perm University. Physics, 2 (2017), 69–73 | DOI

[7] S.T.Vohra, A.R.Mickelson, S.E.Asher, “Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO$_3$ channel waveguides”, J. Appl. Phys., 66 (1989), 5161–5174 | DOI

[8] M.De Micheli, J.Botineau, S.Neveu, P.Sibillot, D.B.Ostrowsky, “Independent control of index and profiles in proton-exchanged lithium niobate guides”, Optics Lett., 8 (1983), 114–115 | DOI

[9] Yu.N.Korkishko, V.A.Fedorov, “Structural phase diagram of H$_x$Li$_{1-x}$NbO$_3$ waveguides: the correlation between optical and structural properties”, IEEE J. Sel. Top. Quantum Electron, 2 (1996), 187–196 | DOI

[10] I.V.Petukhov, V.I.Kichigin, S.S.Mushinskii, D.I.Sidorov, O.R.Semenova, “The influence of plasma treatment of lithium niobate crystal surface on the proton exchange process in molten benzoic acid”, Bulletin of Perm University. Chemistry, 9 (2019), 371–379 | DOI

[11] A.A.Kozlov, U.O.Salgaeva, V.A.Zhuravlev, A.B.Volyntsev, “The study of the kinetics of thin-film lithium niobate reactive ion etching in a fluorine-containing plasma”, Bulletin of Perm University. Physics, 1 (2024), 56–71 | DOI

[12] Y.Li, T.Lan, D.Yang, Z.Wang, “Fabrication of ridge optical waveguide in thin film lithium niobate by proton exchange and wet etching”, Optical Materials, 120 (2021), 111433 | DOI

[13] V.A.Demin, M.I.Petukhov, R.S.Ponomarev, “An ionic boundary layer near the lithium niobate surface in the proton exchange process”, Surface Engineering and Applied Electrochemistry, 59 (2023), 321–328 | DOI

[14] V.A.Demin, M.I.Petukhov, R.S.Ponomarev, M.Kuneva, “Effect of Permittivity on the Ionic Boundary Layer upon Protonation of Lithium Niobate”, Journal of Siberian Federal University. Mathematics and Physics, 16:5 (2023), 611–619

[15] V.A.Demin, M.I.Petukhov, “Application of multiple scales method to the problem about characteristics of the ionic layer near the surface of lithium niobate crystal in a benzoic acid melt”, Microgravity Science and Technology, 36 (2024), 33 | DOI

[16] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, v. 6, Butterworth-Heinemann, 1987 | MR

[17] F.Pontiga, A.Castellanos, “Physical mechanisms of instability in a liquid layer subjected to an electric field and a thermal gradient”, Phys. Fluids, 6 (1994), 1684 | DOI | Zbl

[18] E.A.Demekhin, N.V.Nikitin, V.S.Shelistov, “Direct numerical simulation of electrokinetic instability and transition to chaotic motion”, Phys. Fluids, 25 (2013), 122001 | DOI

[19] G.I.Skanavi, Fizika dielektrikov. Oblast' slabyh polej, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, M., 1949 (in Russian)

[20] I.K.Kikoin, Tablicy fizicheskih velichin, Atomizdat, M., 1976 (in Russian)

[21] G.Z.Gershuni, E.M.Zhukhovitskii, Convective stability of incompressible fluids, Keter Publishing House, Jerusalem, 1976

[22] P.Roache, Computational fluid dynamics, Hermosa publishers, Albuquerque, 1976 | MR