Certain integral formulas involving products of two incomplete beta functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 5-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to obtain some integral formulas involving products of two incomplete beta functions in terms of general triple hypergeometric series and Kampé de Fériet function. Some new particular integral formulas involving the incomplete beta function are also calculated as an application of our main results with the help of Whipple, Dixon and extension of Dixon summation theorems.
Keywords: incomplete beta function, Integral formulas, Kampé de Fériet function, General triple hypergeometric series.
@article{JSFU_2025_18_1_a0,
     author = {Ahmed Ali Atash},
     title = {Certain integral formulas involving products of two incomplete beta functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a0/}
}
TY  - JOUR
AU  - Ahmed Ali Atash
TI  - Certain integral formulas involving products of two incomplete beta functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2025
SP  - 5
EP  - 13
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a0/
LA  - en
ID  - JSFU_2025_18_1_a0
ER  - 
%0 Journal Article
%A Ahmed Ali Atash
%T Certain integral formulas involving products of two incomplete beta functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2025
%P 5-13
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a0/
%G en
%F JSFU_2025_18_1_a0
Ahmed Ali Atash. Certain integral formulas involving products of two incomplete beta functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 18 (2025) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/JSFU_2025_18_1_a0/

[1] R.Alahmadi, H.Almefleh, “Antiderivatives and integrals involving incomplete beta functions with applications”, Aust. J. Math. Anal. Appl., 17 (2020), 7 pp. | MR

[2] W.N.Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Math. And Math. Phys., 32, Cambridge Univ. Press, London, 1935 | MR | Zbl

[3] J.González-Santander, “A note on some reduction formulas for the incomplete beta function and the Lerch transcendent”, Mathematics, 9 (2021), 1486 | DOI

[4] J.L.González-Santander, F.Sánchez Lasheras, “Sums involving the Digamma function connected to the incomplete beta function and the Bessel functions”, Mathematics, 11 (2023), 1937 | DOI

[5] I.S.Gradshteyn, I.M.Ryzhik, Tables of Integrals, Series, and Products, 7th ed., Academic Press, Boston, MA, 2007 | MR

[6] Y.S.Kim, M.A.Rakha, A.K.Rathie, “Extensions of certain classica summation theorems for the series ${}_2F_1$, ${}_3F_2$, and ${}_4F_3$ with applications in Ramanujan's summations”, Intern. J. Mathematics and Math. Sci., 2010 (2010) | DOI | MR

[7] K.B.Oldham, J.C.Myland, J.Spanier, An Atlas of Functions: with equator, the atlas function calculator, Springer Science Business Media, New York, 2009 | MR

[8] F.W.Olver, D.W.Lozier, R.F.Boisvert, C.W.Clark (eds), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010 | MR | Zbl

[9] A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev, Integrals and Series, v. 3, More Special Functions, Nauka, M., 1986 | MR | Zbl

[10] H.M.Srivastava, P.W.Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited), Chichester; John Wiley Sons, New York–Chichester–Brisbane–Toronto, 1985 | MR | Zbl

[11] H.M.Srivastava, H.L.Manocha, A Treatise on Generating Functions, Halsted Press, New York, 1984 | MR | Zbl