Aptamer-based microfluidic device for isolation of circulating tumor cells
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 743-753.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the design of a microfluidic device for capturing circulating tumor cells, a method for immobilizing aptamers on the surface of the chip reaction chamber, and an algorithm for controlling flows in microchannels. It was shown that the maximum efficiency of aptamer immobilization was achieved by treating the chip surface with a 50% aqueous-alcoholic NaOH solution. In addition, it was found that the most number of tumor cells of the MCF7 culture attached on the surface coated with aptamers at low flow rates of less than 2 $\mu$l/min. It was noted that immobilized tumor cells are capable of being retained by aptamers at flow rates of up to 200 $\mu$l/min.
Keywords: aptamers, immobilization, circulating tumor cells.
@article{JSFU_2024_17_6_a5,
     author = {Kirill A. Lukyanenko and Anastasia A. Koshmanova and Pavel A. Shesternya and Anna S. Kichkailo},
     title = {Aptamer-based microfluidic device for isolation of circulating tumor cells},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {743--753},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a5/}
}
TY  - JOUR
AU  - Kirill A. Lukyanenko
AU  - Anastasia A. Koshmanova
AU  - Pavel A. Shesternya
AU  - Anna S. Kichkailo
TI  - Aptamer-based microfluidic device for isolation of circulating tumor cells
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 743
EP  - 753
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a5/
LA  - en
ID  - JSFU_2024_17_6_a5
ER  - 
%0 Journal Article
%A Kirill A. Lukyanenko
%A Anastasia A. Koshmanova
%A Pavel A. Shesternya
%A Anna S. Kichkailo
%T Aptamer-based microfluidic device for isolation of circulating tumor cells
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 743-753
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a5/
%G en
%F JSFU_2024_17_6_a5
Kirill A. Lukyanenko; Anastasia A. Koshmanova; Pavel A. Shesternya; Anna S. Kichkailo. Aptamer-based microfluidic device for isolation of circulating tumor cells. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 743-753. http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a5/

[1] S.R.Yan, M.M.Foroughi, M.Safaei and ets., “A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with var-ious detection strategies”, International journal of biological macromolecules, 155 (2020), 184–207 | DOI

[2] L.S.Liu, F.Wang, Y.Ge, P.K.Lo, “Recent Developments in Aptasensors for Diagnostic Applications”, ACS Applied Materials $\$ Interfaces, 13 (2021), 9329–9358 | DOI

[3] L.Hosseinzadeh, M.Mazloum-Ardakani, “Advances in aptasensor technology”, Advances in Clinical Chemistry, 99 (2020), 237–279 | DOI

[4] K.Yuan, O.Cai, H Ma, Y.Luo, L.Wang, S.Su, “Recent Progress in Electrochemical Aptasensors: Construction and Application”, Chemosensors, 11 (2023), 488 | DOI

[5] J.I.Omage, E.Easterday, J.T.Rumph, I.Brula, B.Hill, J.Kristensen, D.T.Ha, C.L.Galindo, M.K.Danquah, N.Sims, V.T.Nguyen, “Cancer Diagnostics and Early Detection Using Electro-chemical Aptasensors”, Micromachines, 13:4 (2022), 522 | DOI

[6] Q. UL Ain Zahra, Q.A.Khan, Z.Luo, “Advances in Optical Aptasensors for Early Detection and Diagnosis of Various Cancer Types”, Frontiers in Oncology, 11 (2021), 632165 | DOI

[7] E.M.Hassan, M.C.DeRosa, “Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors”, TrAC Trends in Analytical Chemistry, 124 (2020), 115806 | DOI

[8] H.Becker, “Polymer microfluidic devices”, Talanta, 56:2 (2002), 267–287 | DOI

[9] T.Rohr, D.F.Ogletree, F.Svec, J.M.J.Frechet, “Surface Functionalization of Thermoplastic Polymers for the Fabrication of Microfluidic Devices by Photoinitiated Grafting”, Advanced Functional Materials, 13:4 (2003), 264–270 | DOI

[10] U.M.Attia, S.Marson, J.R.Alcock, “Micro-injection moulding of polymer microfluidic devices”, Microfluidics and Nanofluidics, 7:1 (2009), 1–28 | DOI

[11] C.W.Tsao, D.L.DeVoe, “Bonding of thermoplastic polymer microfluidics”, Microfluidics and Nanofluidics, 6:1 (2008), 1–16 | DOI

[12] J.Zhou, A.V.Ellis, N.H.Voelcker, “Recent developments in PDMS surface modification for microfluidic devices”, Electrophoresis, 31:1 (2010), 2–16 | DOI