Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_6_a14, author = {Andrey A. Gavrilov and Dmitriy V. Guzei and Aleksandr A. Dekterev and Andrey V. Minakov}, title = {Verification of a numerical method for modeling two-phase flows of immiscible liquids with the transfer of modifying additives in three-dimensional digital core models}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {817--828}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a14/} }
TY - JOUR AU - Andrey A. Gavrilov AU - Dmitriy V. Guzei AU - Aleksandr A. Dekterev AU - Andrey V. Minakov TI - Verification of a numerical method for modeling two-phase flows of immiscible liquids with the transfer of modifying additives in three-dimensional digital core models JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 817 EP - 828 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a14/ LA - en ID - JSFU_2024_17_6_a14 ER -
%0 Journal Article %A Andrey A. Gavrilov %A Dmitriy V. Guzei %A Aleksandr A. Dekterev %A Andrey V. Minakov %T Verification of a numerical method for modeling two-phase flows of immiscible liquids with the transfer of modifying additives in three-dimensional digital core models %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 817-828 %V 17 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a14/ %G en %F JSFU_2024_17_6_a14
Andrey A. Gavrilov; Dmitriy V. Guzei; Aleksandr A. Dekterev; Andrey V. Minakov. Verification of a numerical method for modeling two-phase flows of immiscible liquids with the transfer of modifying additives in three-dimensional digital core models. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 817-828. http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a14/
[1] V.A.Balashov, E.B.Savenkov, “Digital Core. Simulating microflows in the pore space of reservoir rocks”, Neftegaz. RU, 7 (2019) (in Russian) | Zbl
[2] V.Ravlo, K.S.Arland, Calibration of digital pore scale models, SCA2014-048, 2014, 10 pp.
[3] A.N.Lazeev, E.O.Timashev, I.A.Vakhrusheva, M.F.Serkin, “Digital core technology development in Rosneft Oil Company”, Neftyanoe Khozyaystvo – Oil Industry, 11 (2018), 18–22 | DOI
[4] S.A.Idrisova, M.A.Tugarova, E.V.Stremichev, B.V.Belozerov, “Digital core. Integration of carbonate rocks thin section studies with results of routine core tests”, PROneft. Professionalno o nefti, 2 (2018), 36–41 (in Russian) | DOI
[5] F.O.Alpak, S.Berg, “Prediction of fluid topology and relative permeability in imbibition in sandstone rock by direct numerical simulation”, Adv. Wat. Res., 2018
[6] A.V.Minakov, D.V.Guzei, M.I.Pryazhnikov, S.A.Filimonov, Y.O.Voronenkova, “3D pore-scale modeling of nanofluids–enhanced oil recovery”, Pet. Explor. Dev., 48:4 (2021), 956–967 | DOI
[7] O.Dorn, R.Villegas, “History matching of petroleum reservoirs using a level set technique”, Inverse Problems, 24:3 (2008), 035015 | DOI | MR | Zbl
[8] S.Junjie, L.Cheng, R.Cao, Z.Jia, G.Liu, “Phase-field simulation of imbibition for the matrix-fracture of tight oil reservoirs considering temperature change”, Water, 13:7 (2021), 1004 | DOI
[9] D.Wang, F.Liu, J.Sun, Y.Li, Q.Wang, Y.Jiao, K.Song, S.Wang, R.Ma, “Lattice-Boltzmann simulation of two-phase flow in carbonate porous media retrieved from computed microtomography”, Chemical Engineering Science, 270 (2023), 118514 | DOI
[10] A.A.Dekterev, A.A.Gavrilov, A.V.Minakov, “State-of-the-art capability of using the SigmaFlow CFD code for solving thermophysical problems”, Modern Science: Researches, Ideas, Results, Technologies, 2:4 (2010), 117–122 (in Russian)
[11] A.A.Dekterev, K.Yu.Litvintsev, A.A.Gavrilov, E.B.Kharlamov, S.A.Filimonov, “Freely distributed SIGMA FW software complex for simulation of hydrodynamics and heat transfer”, J. Siberian Federal University. Engineering and Technology, 10:4 (2017), 534–542 (in Russian) | DOI
[12] A.A.Gavrilov, Computational algorithms and software complex for numerical simulation of non-Newtonian fluids flows in an annular channel, Dissertation Abstract, Cand. Sc. Physics and Mathematics, 05.13.18 – Mathematical modeling, numerical methods, and software complexes, 2014 pp. (in Russian)
[13] C.W.Hirt, B.D.Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39:4 (1981), 201–225 | DOI | Zbl
[14] J.U.Brackbill, D.B.Kothe, S.Zemach, “A continuum method for modeling surface tension”, J. Comput. Phys., 100:2 (1992), 335–354 | DOI | MR | Zbl
[15] Q.Raeini, M.J.Blunt, B.Bijeljic, “Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method”, J. Comput. Phys., 231 (2012), 5653–5668 | DOI | MR | Zbl
[16] J.H.Ferziger, M.Peric, Computational Methods for Fluid Dynamics, Springer Verlag, Berlin, 2002 | DOI | MR | Zbl
[17] S.Popinet, “Numerical models of surface tension”, Annu. Rev. Fluid Mech., 50 (2018), 49–75 | DOI | MR | Zbl
[18] D.Guzei, A.Skorobogatova, S.Ivanova, A.Minakov, “A Computational Study of Polymer Solutions Flow Regimes during Oil Recovery from a Fractured Model”, Appl. Sci., 13 (2023), 11508 | DOI