Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_5_a8, author = {Egor I. Safonov and Sergey G. Pyatkov and Daniil A. Parunov}, title = {Recovering surface fluxes on the boundary of the domain from pointwise measurements}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {632--643}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a8/} }
TY - JOUR AU - Egor I. Safonov AU - Sergey G. Pyatkov AU - Daniil A. Parunov TI - Recovering surface fluxes on the boundary of the domain from pointwise measurements JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 632 EP - 643 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a8/ LA - en ID - JSFU_2024_17_5_a8 ER -
%0 Journal Article %A Egor I. Safonov %A Sergey G. Pyatkov %A Daniil A. Parunov %T Recovering surface fluxes on the boundary of the domain from pointwise measurements %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 632-643 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a8/ %G en %F JSFU_2024_17_5_a8
Egor I. Safonov; Sergey G. Pyatkov; Daniil A. Parunov. Recovering surface fluxes on the boundary of the domain from pointwise measurements. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 632-643. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a8/
[1] O.M.Alifanov, E.A.Artyukhin, A.V.Nenarokomov, Inverse Problems in the Study of Complex Heat Transfer, Janus-K, Moscow, Russia, 2009
[2] V.N.Tkachenko, Mathematical Modeling, Identification and Control of Technological Processes of Heat Treatment of Materials, Naukova Dumka, Kiev, Ukraine, 2008 | MR
[3] O.M.Alianov, M.A.Kukushkin, “Control of heat exchange parameters on the aircraft surface”, Ideas and Innpovations, 10:1-2 (2022), 69–73 (in Russian) | DOI
[4] M.V.Glagolev, A.F.Sabrekov, “Determination of gas exchange on the border between ecosystem and atmosphere, Inverse modeling”, Math. Biol. Bioinform., 2012, no. 7, 81–101 (in Russian) | DOI
[5] M.V.Glagolev, “Inverse modelling method for the determination of the gas flux from the soil”, Environ. Dyn. Glob. Clim. Chang., 2010, no. 1, 17–36 (in Russian) | DOI
[6] A.F.Sabrekov, M.V.Glagolev, I.E.Terentyeva, “Determination of the specific flux of methane from soil using inverse modeling based on conjugate equations”, Reports of the International Conference Mathematical Biology and Bioinformatics, v. 7, ed. V.D.Lakhno, IMPB, Pushchino, Russia, 2018, e94 | DOI
[7] M.V.Glagolev, O.R.Kotsyurbenko, A.F.Sabrekov, Y.V.Litti, I.E.Terentieva, “Methodologies for Measuring Microbial Methane Production and Emission from Soils — A Review”, Microbiology, 90 (2021), 1–19 | DOI
[8] A.I.Borodulin, B.D.Desyatkov, G.A.Makhov, S.R.Sarmanaev, “Determination of the emission of bog methane from the measured values of its concentration in the surface layer of the atmosphere”, Meteorol. Hydrol., 1997, no. 1, 66–74
[9] P.P.Permyakov, “Recovering of boundary conditions for heat exchange modeling on the ground surface”, Arctic XXI Century, Humanitarian Sciences, 17:1 (2019), 27-35 | MR
[10] S.Wang, L.Zhang, X.Sun, H.Jia, “Solution to Two-Dimensional Steady Inverse Heat Transfer Problems with Interior Heat Source Based on the Conjugate Gradient Method”, Math. Prob. Eng., 2017 (2017), 2861342 | DOI | MR | Zbl
[11] S.A.Kolesnik, V.F.Formalev, E.L.Kuznetsova, “On inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundaries of anisotropic bodies”, High Temp., 53 (2015), 68–72 | DOI
[12] M.J.Colaco, H.R.B.Orlande, “Inverse natural convection problem of simultaneous estimation of two boundary heat fluxes in irregular cavities”, Int. J. Heat Mass Transf., 47 (2004), 1201–1215 | DOI | MR | Zbl
[13] A.S.A.Alghamdi, “Inverse Estimation of Boundary Heat Flux for Heat Conduction Model”, JKAU Eng. Sci., 21 (2010), 73–95 | DOI
[14] S.D.Farahani, A.R.Naja, F.Kowsary, M.Ashjaee, “Experimental estimation heat ux and heat transfer coefficient by using inverse methods”, Sci. Iran. B, 23 (2016), 1777–1786 | DOI
[15] D.N.Hao, P.X.Thanh, D.Lesnic, “Determination of the heat transfer coefficients in transient heat conduction”, Inverse Probl., 29 (2013), 095020 | DOI | MR | Zbl
[16] H.Egger, Y.Heng, W.Marquardt, A.Mhamdi,, Efficient Solution of a Three-Dimensional Inverse Heat Conduction Problem in Pool Boiling, Preprint AICES-2009-4, Aachen Institute for Advanced Study in Computational Engineering Science, Aachen, Germany, 2009 | MR
[17] M.V.Glagolev, I.V.Fillipov, Measuments of Green Gases Flows in Bog Ecossystems, Yugra State University, Khanty-Mansiysk, Russia, 2014
[18] K.A.Woodbury, J.V.Beck, H.Najafi, “Filter solution of inverse heat conduction problem using measured temperature history as remote boundary condition”, Int. J. Heat Mass Transf., 72 (2014), 139–147 | DOI
[19] G.I.Marchuk, Mathematical Models in Environmental Problems, Studies in Mathematics and Its Applications, 16, Elsevier Science Publishers, Amsterdam, The Netherlands, 1986 | MR
[20] Y.M.Matsevity, N.A.Safonov, V.V.Ganchin, “On the solution of nonlinear inverse boundary value problems of heat conduction”, J. Mech. Eng., 19 (2016), 28–36 | DOI
[21] T.M.Onyango, D.B.Ingham, D.Lesnic, “Restoring boundary conditions in heat conduction”, J. Eng. Math., 62 (2008), 85–101 | DOI | MR | Zbl
[22] S.Y.Shadrin, A.V.Zhirov, T.S.Smirnova, “Reconstruction of the unsteady boundary condition on the heated surface during anodic heating”, Bull. Kostroma State Univ., 18 (2012), 22–25
[23] A.Fernandes, P.Priscila, F.B.Sousa, V.L.Borges, G.Guimaraes, “Use of 3D-transient analytical solution based on Green's function to reduce computational time in inverse heat conduction problems”, Appl. Math. Model., 34 (2010), 4040–4049 | DOI | Zbl
[24] V.Norouzifard, M.Hamedi, “A three-dimensional heat conduction inverse procedure to investigate tool-chip thermal interaction in machining process”, Int. J. Adv. Manuf. Technol., 74 (2014), 1637–1648 | DOI
[25] S.A.Kolesnik, V.F.Formalev, E.L.Kuznetsova, “The inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundries of anisotropic bodies”, High Temperature, 53:1 (2015), 68–72 | DOI
[26] S.Abboudi, E.Artioukhine, “Simultaneous estimation of two boundary conditions in a two-dimensional heat conduction problem”, Proceeding of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice 2004, CRC Press, London, UK, 2019
[27] D.C.Knupp, L.A.S.Abreu, “Explicit boundary heat flux reconstruction employing temperature measurements regularized via truncated eigenfunction expansions”, Int. Commun. Heat Mass Transf., 78 (2016), 241–252 | DOI
[28] J.V.Beck, B.Blackell, St. C.R.Clair, Inverse Heat Conduction, A Wiley-Interscience Publication, New York, NY, USA, 1985 | Zbl
[29] S.G.Pyatkov, D.V.Shilenkov, “Existence and uniqueness theorems in the inverse problem of recovering surface fluxes from pointwise measurements”, Mathematics, 10 (2022), 1549 | DOI
[30] R.Denk, M.Hieber, J.Prüss, “Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257 (2007), 193–224 | DOI | MR | Zbl
[31] O.A.Ladyzhenskaya, V.A.Solonnikov, N.N.Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, USA, 1968 | MR
[32] R.Denk, M.Hieber, J.Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Am. Math. Soc., 2003 | MR | Zbl
[33] V.A.Belonogov, S.G.Pyatkov, “On solvability of some classes of transmission problems in a cylindrical space domain”, Siber. Electr. Math. Reports, 18:1 (2021), 176-206 | DOI | MR | Zbl