Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_5_a6, author = {Sevdiyar A. Imomkulov and Sukrotbek I. Kurbonboev}, title = {The {Dirichlet} problem in the class of $\mathrm{sh_m}$-functions on a {Stein} manifold $X$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {613--621}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/} }
TY - JOUR AU - Sevdiyar A. Imomkulov AU - Sukrotbek I. Kurbonboev TI - The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 613 EP - 621 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/ LA - en ID - JSFU_2024_17_5_a6 ER -
%0 Journal Article %A Sevdiyar A. Imomkulov %A Sukrotbek I. Kurbonboev %T The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 613-621 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/ %G en %F JSFU_2024_17_5_a6
Sevdiyar A. Imomkulov; Sukrotbek I. Kurbonboev. The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 613-621. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/
[1] P.Ahag, C.Rafal, H.Lisa, “Extension and approximation of $m$-subharmonic functions”, Complex Variables and Elliptic Equations, 2017, 1–19 | MR
[2] E.Bedford, B.A.Taylor, “The Dirichlet problem for a complex Monge-Ampère equation”, Inventiones Math., 37 (1976), 1–44 | DOI | MR | Zbl
[3] Z.Blocki, “Weak solutions to the complex Hessian equation”, Ann.Inst.Fourier, Grenoble, 55:5 (2005), 1735–1756 | DOI | MR | Zbl
[4] S.Dinew, S.Kolodziej, “A priori estimates for complex Hessian equations”, Analysis and PDE, 7:1 (2014), 227–244 | DOI | MR | Zbl
[5] S.I.Kurbonboev, “Strongly $m$-subharmonic functions on complex manifolds”, Bulletin of NUUz: Mathematics and Natural Sciences, 5:2 (2022), 91–100
[6] S.-Y.Li, “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J. Math., 8:1 (2004), 87–10 | DOI | MR | Zbl
[7] H.Lu, “A variational Approach to complex Hessian equations in ${{\mathbb{C}}^{n}}$”, Journal of Mathematical Analysis and Applications, 431:1 (2015), 228–259 | DOI | MR | Zbl
[8] E.A.Poletsky, R.Sigurdsson, “Dirichlet problems for plurisubharmonic functions on compact sets”, Math. Z., 271:3-4 (2012), 877–892 | DOI | MR | Zbl
[9] A.Sadullaev, B.Abdullaev, “Potential theory in the class of $m$-subharmonic functions”, Trudy Mat. Inst. Steklova, 279 (2012), 166–192 | MR | Zbl
[10] J.Siciak, “Extreme plurisubharmonic functions in $\mathbb{C}^n$”, Ann. Polon. Math., 39 (1981), 175–211 | DOI | MR | Zbl
[11] B.I.Abdullaev, S.A.Imomkulov, R.A.Sharipov, “$\alpha $-subharmonic functions”, Sontemporary mathematics. Fundamental directions, 67:4 (2021), 620–633 (in Russian) | DOI | MR
[12] B.I.Abdullaev, R.A.Sharipov, “Locally and globally $\alpha $-polar sets”, Bulletin of the Institute of Mathematics, Tashkent, 2019, no. 5, 4–8 (in Russian)
[13] J.Garnett, Bounded Analytic Functions, Mir, M., 1984 (in Russian) | MR | Zbl
[14] A.Sadullaev, Theory of pluripotential. Applications, Saarbrucken, Germany, 2012 (in Russian)
[15] A.Sadullaev, Approximation of $s{h_m}$-function on Stein manifold, preprint, 2024 (in Russian)
[16] L.Hörmander, Introduction to the Theory of Functions of Several Complex Variables, Mir, M., 1968 (in Russian) | MR