The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 613-621.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to introduce and study strongly $m$-subharmonic ($sh_m$) functions on complex manifolds $X\subset \mathbb{C}^N, dim X=n, n\leqslant N.$ There are different ways to define $sh_m$-functions on complex manifolds: using local coordinates, using retraction $\pi : {{\mathbb{C}}^{N}}\to X$ or using Jensen measures (see for example [1, 8, 13]). In this paper we use the local coordinates. In Section 1 we present the definition and simplest properties of $sh_m$-functions in ${{\mathbb{C}}^{n}}.$ In Section 2, we provide the definition of $sh_m$-functions in the domains $D\subset X$ of the complex manifold $X$ and prove several of their potential properties. Section 3 introduces maximal functions and their properties, while Section 4 presents the main result of the work (Theorem 4.1) concerning the solvability of the Dirichlet problem in regular domains.
Keywords: $sh_m$-functions, plurisubharmonic functions, Stein manifolds, Dirichlet problem.
@article{JSFU_2024_17_5_a6,
     author = {Sevdiyar A. Imomkulov and Sukrotbek I. Kurbonboev},
     title = {The {Dirichlet} problem in the class of $\mathrm{sh_m}$-functions on a {Stein} manifold $X$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {613--621},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/}
}
TY  - JOUR
AU  - Sevdiyar A. Imomkulov
AU  - Sukrotbek I. Kurbonboev
TI  - The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 613
EP  - 621
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/
LA  - en
ID  - JSFU_2024_17_5_a6
ER  - 
%0 Journal Article
%A Sevdiyar A. Imomkulov
%A Sukrotbek I. Kurbonboev
%T The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 613-621
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/
%G en
%F JSFU_2024_17_5_a6
Sevdiyar A. Imomkulov; Sukrotbek I. Kurbonboev. The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 613-621. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a6/

[1] P.Ahag, C.Rafal, H.Lisa, “Extension and approximation of $m$-subharmonic functions”, Complex Variables and Elliptic Equations, 2017, 1–19 | MR

[2] E.Bedford, B.A.Taylor, “The Dirichlet problem for a complex Monge-Ampère equation”, Inventiones Math., 37 (1976), 1–44 | DOI | MR | Zbl

[3] Z.Blocki, “Weak solutions to the complex Hessian equation”, Ann.Inst.Fourier, Grenoble, 55:5 (2005), 1735–1756 | DOI | MR | Zbl

[4] S.Dinew, S.Kolodziej, “A priori estimates for complex Hessian equations”, Analysis and PDE, 7:1 (2014), 227–244 | DOI | MR | Zbl

[5] S.I.Kurbonboev, “Strongly $m$-subharmonic functions on complex manifolds”, Bulletin of NUUz: Mathematics and Natural Sciences, 5:2 (2022), 91–100

[6] S.-Y.Li, “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J. Math., 8:1 (2004), 87–10 | DOI | MR | Zbl

[7] H.Lu, “A variational Approach to complex Hessian equations in ${{\mathbb{C}}^{n}}$”, Journal of Mathematical Analysis and Applications, 431:1 (2015), 228–259 | DOI | MR | Zbl

[8] E.A.Poletsky, R.Sigurdsson, “Dirichlet problems for plurisubharmonic functions on compact sets”, Math. Z., 271:3-4 (2012), 877–892 | DOI | MR | Zbl

[9] A.Sadullaev, B.Abdullaev, “Potential theory in the class of $m$-subharmonic functions”, Trudy Mat. Inst. Steklova, 279 (2012), 166–192 | MR | Zbl

[10] J.Siciak, “Extreme plurisubharmonic functions in $\mathbb{C}^n$”, Ann. Polon. Math., 39 (1981), 175–211 | DOI | MR | Zbl

[11] B.I.Abdullaev, S.A.Imomkulov, R.A.Sharipov, “$\alpha $-subharmonic functions”, Sontemporary mathematics. Fundamental directions, 67:4 (2021), 620–633 (in Russian) | DOI | MR

[12] B.I.Abdullaev, R.A.Sharipov, “Locally and globally $\alpha $-polar sets”, Bulletin of the Institute of Mathematics, Tashkent, 2019, no. 5, 4–8 (in Russian)

[13] J.Garnett, Bounded Analytic Functions, Mir, M., 1984 (in Russian) | MR | Zbl

[14] A.Sadullaev, Theory of pluripotential. Applications, Saarbrucken, Germany, 2012 (in Russian)

[15] A.Sadullaev, Approximation of $s{h_m}$-function on Stein manifold, preprint, 2024 (in Russian)

[16] L.Hörmander, Introduction to the Theory of Functions of Several Complex Variables, Mir, M., 1968 (in Russian) | MR