On a new identity for double sum related to Bernoulli numbers
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 609-612
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $m$, $n$ and $l$ be integers with $0\leqslant l\leqslant m+n$. It is the main purpose of this paper to give an identity for the sum: $$\mathop{\sum_{a=0}^{m} \sum_{b=0}^{n}}_{a+b\geqslant m+n-l}B_{m-a}B_{n-b}\frac{\binom{m}{a}\binom{n}{b}}{a+b+1}\binom{a+b+1}{m+n-l},$$ where $B_m$ $(m=0,1,2,\dots)$ is the Bernoulli number. As corollary we prove that the above sum equal to $\dfrac{1}{2}$ when $l=0$.
Keywords:
Bernoulli number, generating function.
Mots-clés : Bernoulli polynomial
Mots-clés : Bernoulli polynomial
@article{JSFU_2024_17_5_a5,
author = {Brahim Mittou},
title = {On a new identity for double sum related to {Bernoulli} numbers},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {609--612},
publisher = {mathdoc},
volume = {17},
number = {5},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a5/}
}
TY - JOUR AU - Brahim Mittou TI - On a new identity for double sum related to Bernoulli numbers JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 609 EP - 612 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a5/ LA - en ID - JSFU_2024_17_5_a5 ER -
Brahim Mittou. On a new identity for double sum related to Bernoulli numbers. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 609-612. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a5/