To the question of the closure of the carpet
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 684-688

Voir la notice de l'article provenant de la source Math-Net.Ru

For a root system $\Phi$, the set $\mathfrak{A}= \{\mathfrak{A}_{r}\ | \ r \in \Phi \}$ of additive subgroups $\mathfrak{A}_{r}$ over commutative ring $K$ is called a carpet of type $\Phi$ if commuting two root elements $x_{r}(t), t \in \mathfrak{A}_{r}$ and $x_{s}(u), u \in \mathfrak{A}_{s}$, gives a result where each factor lies in the subgroup $\Phi (\mathfrak{A})$ generated by the root elements $x_{r}(t), t \in \mathfrak{A}_{r}, r \in \Phi$. The subgroup $\Phi (\mathfrak{A})$ is called a carpet subgroup. It defines a new set of additive subgroups $\overline{\mathfrak{A}} = \{\overline{\mathfrak{A}}_{r} | r \in \Phi \}$, the name of the closure of the carpet $\mathfrak{A}$, which is set by equation $\overline{\mathfrak{A}}_{r} = \{t \in K\ | \ x_{r}(t) \in \Phi(\mathfrak{A})\}$. Ya. Nuzhin wrote down the following question in the Kourovka notebook. Is the closure $\overline{\mathfrak{A}}$ of a carpet $\mathfrak{A}$ {\it a carpet too? (question 19.61). The article provides a partial answer to this question. It is proved that the closure of a carpet of type $\Phi$ over commutative ring of odd characteristic $p$ is a carpet if $3$ does not divide $p$ when $\Phi$ of type $G_{2}$.
Keywords: commutative ring, Chevalley group, carpet of additive subgroups, $K$-character.
@article{JSFU_2024_17_5_a13,
     author = {Elizaveta N. Troyanskaya},
     title = {To the question of the closure of the carpet},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {684--688},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/}
}
TY  - JOUR
AU  - Elizaveta N. Troyanskaya
TI  - To the question of the closure of the carpet
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 684
EP  - 688
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/
LA  - en
ID  - JSFU_2024_17_5_a13
ER  - 
%0 Journal Article
%A Elizaveta N. Troyanskaya
%T To the question of the closure of the carpet
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 684-688
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/
%G en
%F JSFU_2024_17_5_a13
Elizaveta N. Troyanskaya. To the question of the closure of the carpet. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 684-688. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/