To the question of the closure of the carpet
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 684-688.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a root system $\Phi$, the set $\mathfrak{A}= \{\mathfrak{A}_{r}\ | \ r \in \Phi \}$ of additive subgroups $\mathfrak{A}_{r}$ over commutative ring $K$ is called a carpet of type $\Phi$ if commuting two root elements $x_{r}(t), t \in \mathfrak{A}_{r}$ and $x_{s}(u), u \in \mathfrak{A}_{s}$, gives a result where each factor lies in the subgroup $\Phi (\mathfrak{A})$ generated by the root elements $x_{r}(t), t \in \mathfrak{A}_{r}, r \in \Phi$. The subgroup $\Phi (\mathfrak{A})$ is called a carpet subgroup. It defines a new set of additive subgroups $\overline{\mathfrak{A}} = \{\overline{\mathfrak{A}}_{r} | r \in \Phi \}$, the name of the closure of the carpet $\mathfrak{A}$, which is set by equation $\overline{\mathfrak{A}}_{r} = \{t \in K\ | \ x_{r}(t) \in \Phi(\mathfrak{A})\}$. Ya. Nuzhin wrote down the following question in the Kourovka notebook. Is the closure $\overline{\mathfrak{A}}$ of a carpet $\mathfrak{A}$ {\it a carpet too? (question 19.61). The article provides a partial answer to this question. It is proved that the closure of a carpet of type $\Phi$ over commutative ring of odd characteristic $p$ is a carpet if $3$ does not divide $p$ when $\Phi$ of type $G_{2}$.
Keywords: commutative ring, Chevalley group, carpet of additive subgroups, $K$-character.
@article{JSFU_2024_17_5_a13,
     author = {Elizaveta N. Troyanskaya},
     title = {To the question of the closure of the carpet},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {684--688},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/}
}
TY  - JOUR
AU  - Elizaveta N. Troyanskaya
TI  - To the question of the closure of the carpet
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 684
EP  - 688
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/
LA  - en
ID  - JSFU_2024_17_5_a13
ER  - 
%0 Journal Article
%A Elizaveta N. Troyanskaya
%T To the question of the closure of the carpet
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 684-688
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/
%G en
%F JSFU_2024_17_5_a13
Elizaveta N. Troyanskaya. To the question of the closure of the carpet. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 684-688. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a13/

[1] V.M.Levchuk, “Parabolic subgroups of certain ABA-groups”, Mathematical Notes, 31:4 (1982), 259–267 | DOI | MR | Zbl

[2] V.A.Koibaev, “Elementary nets in linear groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 134–141 (in Russian) | MR

[3] S.K.Kuklina, A.O.Likhacheva, Ya.N.Nuzhin, “On closeness of carpets of Lie type over commutative rings”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 192–196 (in Russian) | MR

[4] Kourovskaya notebook. Unsolved questions in group theory, 19th ed., IM SB RAS Publishing House, Novosibirsk, 2018

[5] Ya.N.Nuzhin, “Factorization of carpet subgroups of the Chevalley groups over commutative rings”, J. Sib. Fed. Univ. Math. Phys., 4:4 (2011), 527–535 (in Russian) | Zbl

[6] R.Carter, Simple groups of lie type, Wiley and Sons, London–New York–Sydney–Toronto, 1972 | MR | Zbl