Axisymmetric ideal fluid flows effectively not being tied to vortex zones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 665-678.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper formulates a model of axisymmetric flow of an ideal fluid with $n$ effectively inviscid vortex zones, generalizing the well-known model of M. A. Lavrentiev on the gluing of vortex and potential flows in a plane case. The possibility is shown within the framework of such a model of the existence in space of a liquid sphere streamlined around by a potential axisymmetric flow, consisting of $n$ spherical layers of axisymmetric vortex flows. This model example generalizes the spherical Hill vortex with one vortex zone, known in hydrodynamics. Such a vortex flow with $n$ spherical layers is also possible in a sphere, and, unlike a flow in space, such a flow is not unique. The problem of an axisymmetric vortex flow in a limited region is considered; its formulation generalizes the plane flow of an ideal fluid in a field of Coriolis forces.
Keywords: ideal fluid, vortex flows, spherical Hill vortex.
@article{JSFU_2024_17_5_a11,
     author = {Isaac I. Vainshtein},
     title = {Axisymmetric ideal fluid flows effectively not being tied to vortex zones},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {665--678},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/}
}
TY  - JOUR
AU  - Isaac I. Vainshtein
TI  - Axisymmetric ideal fluid flows effectively not being tied to vortex zones
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 665
EP  - 678
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/
LA  - en
ID  - JSFU_2024_17_5_a11
ER  - 
%0 Journal Article
%A Isaac I. Vainshtein
%T Axisymmetric ideal fluid flows effectively not being tied to vortex zones
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 665-678
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/
%G en
%F JSFU_2024_17_5_a11
Isaac I. Vainshtein. Axisymmetric ideal fluid flows effectively not being tied to vortex zones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 665-678. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/

[1] M.A.Gol'dshtik, Vortex flows, Science, Novosibirsk, 1981

[2] M.A.Lavrentyev, B.V.Shabat, Problems of hydrodynamics and their mathematical models, Science, M., 1973 | MR

[3] K.V.Braginsky, V.V.Savelyev, “Magnetic traps for plasma confinement”, Mathematical modeling, 1999, no. 5, 3–36 | MR

[4] G.K.Bathelor, “A proposal conserning laminar wakes behind bluff bodies at large Reynolds humbers”, J. Fluid Mech., 1956, no. 4, 388–398 | DOI | MR

[5] I.I.Vainshtein, “Solution of two dual problems on gluing vortex and potential flows using the variational method of M.A.Gol'dshtik”, J. Sib. Fed. Univ. Math. Phys., 2011, no. 4(3), 320–331 | Zbl

[6] R.Kurant, Partial differential equations, World Soc., M., 1964 | MR

[7] M.Thompson, Theoretical hydrodynamics, World, M., 1964 | MR

[8] V.D.Shafranov, “On Magnetohydrodynamical Equilibrium Configurations”, Journal of Experimental and Theoretical Phisics, 1958, no. 3 | MR | Zbl

[9] I.I.Vainshtein, “On a boundary value problem of vortex and potential flows of an ideal fluid in the axisymmetric case”, Differential equations, 6:1 (1970), 109–122 | MR

[10] M.A.Gol'dshtik, “Mathematical model of separated flows of incompressible fluid”, Reports of the USSR Academy of Sciences, 147:6 (1962), 1310–1313

[11] I.I.Vainshtein, M.A.Gol'dshtik, “On the motion of an ideal fluid in the field of Coriolis forces”, Reports of the USSR Academy of Sciences, 173:6 (1967), 1277–1280

[12] I.I.Vainshtein, I.M.Fedotova, “Goldshtik problem on gluing vortex flows of an ideal fluid in the axisymmetric case”, Bulletin of the Siberian State University named after Academician M. F. Reshetnev, 3:55 (1914), 48–54

[13] S.N.Antontsev, V.D.Lelyukh, “Some problems of coupling vortex and potential subsonic flows”, Dynamics of a continuous medium, 1969, no. 1, 134–153

[14] P.I.Plotnikov, “On the solvability of one class of problems on gluing potential and vortex flows”, Dynamics of a continuous medium, 1969, no. 3, 61–69

[15] D.K.Potapov, “On the number of solutions for one class of elliptic type equations with a spectral parameter and discontinuous nonlinearity”, Far Eastern Mathematical Journal, 12:1 (2012), 86–88 | MR | Zbl

[16] I.I.Vainshtein, V.K.Yurovsky, “On a problem of conjugation of vortex flows of an ideal fluid”, Journal of Applied Mechanics and Technical Physics, 1976, no. 5, 98–100

[17] M.V.Keldysh, “On some cases of degeneration of equations of elliptic type on the boundary of a domain”, Report of the USSR Academy of Sciences, 77:2 (1951), 181–183 | MR | Zbl

[18] S.A.Tersenov, “On the theory of equations of elliptic type that degenerate on the boundary of the domain”, Sib. math. journal, 3:6 (1973), 1120–1143 | MR

[19] I.L.Karol, “On the theory of boundary value problems for equations of mixed elliptic-hyperbolic type”, Mathematical collection, 38:80 (1956), 261–282 | MR | Zbl

[20] A.Weinshtein, “Jeneral Axially Simmetric Patenial teory”, Bulletin of the Amer. Math.Sosiety, 59:1 (1953)