Axisymmetric ideal fluid flows effectively not being tied to vortex zones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 665-678

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper formulates a model of axisymmetric flow of an ideal fluid with $n$ effectively inviscid vortex zones, generalizing the well-known model of M. A. Lavrentiev on the gluing of vortex and potential flows in a plane case. The possibility is shown within the framework of such a model of the existence in space of a liquid sphere streamlined around by a potential axisymmetric flow, consisting of $n$ spherical layers of axisymmetric vortex flows. This model example generalizes the spherical Hill vortex with one vortex zone, known in hydrodynamics. Such a vortex flow with $n$ spherical layers is also possible in a sphere, and, unlike a flow in space, such a flow is not unique. The problem of an axisymmetric vortex flow in a limited region is considered; its formulation generalizes the plane flow of an ideal fluid in a field of Coriolis forces.
Keywords: ideal fluid, vortex flows, spherical Hill vortex.
@article{JSFU_2024_17_5_a11,
     author = {Isaac I. Vainshtein},
     title = {Axisymmetric ideal fluid flows effectively not being tied to vortex zones},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {665--678},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/}
}
TY  - JOUR
AU  - Isaac I. Vainshtein
TI  - Axisymmetric ideal fluid flows effectively not being tied to vortex zones
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 665
EP  - 678
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/
LA  - en
ID  - JSFU_2024_17_5_a11
ER  - 
%0 Journal Article
%A Isaac I. Vainshtein
%T Axisymmetric ideal fluid flows effectively not being tied to vortex zones
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 665-678
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/
%G en
%F JSFU_2024_17_5_a11
Isaac I. Vainshtein. Axisymmetric ideal fluid flows effectively not being tied to vortex zones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 665-678. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a11/