Symmetries of linear and nonlinear partial differential equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 570-574.

Voir la notice de l'article provenant de la source Math-Net.Ru

Higher symmetries and operator symmetries of linear partial differential equations are considered The higher symmetries form a Lie algebra, and operator ones form an associative algebra. The relationship between these symmetries is established. New symmetries of two-dimensional stationary equations of gas dynamics are found.
Keywords: higher symmetries, operator symmetries, gas dynamics equations.
@article{JSFU_2024_17_5_a1,
     author = {Oleg V. Kaptsov},
     title = {Symmetries of linear and nonlinear partial differential equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {570--574},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a1/}
}
TY  - JOUR
AU  - Oleg V. Kaptsov
TI  - Symmetries of linear and nonlinear partial differential equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 570
EP  - 574
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a1/
LA  - en
ID  - JSFU_2024_17_5_a1
ER  - 
%0 Journal Article
%A Oleg V. Kaptsov
%T Symmetries of linear and nonlinear partial differential equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 570-574
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a1/
%G en
%F JSFU_2024_17_5_a1
Oleg V. Kaptsov. Symmetries of linear and nonlinear partial differential equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 570-574. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a1/

[1] L.V.Ovsyannikov, Group Analysis of differential equations, Academic Press, NY, 1982 | MR | Zbl

[2] N.H.Ibragimov, Transformation groups applied to mathematical physics, Reidel, Boston, 1985 | MR | Zbl

[3] P.Olver, Applications of Lie Groups to Differential Equations, Springer, NY, 1986 | MR | Zbl

[4] N.H.Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, v. I-III, CRC Press, Baton Rouge, 1995 | MR | Zbl

[5] A.D.Polyanin, V.F.Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman Hall/CRC Press, 2012 | MR

[6] I.S.Krasil'shchik, A.M.Vinogradov, et al., Symmetries and conservation laws for differential equations of mathematical physics, American Mathematical Society, Providence, RI, 1999 | MR | Zbl

[7] W.Miller, Symmetry and separation of variables, Addison-Wesley Publishing Company, London, 1977 | MR | Zbl

[8] E.Kalnins, J.Kress, W.Miller, Separation of variables and superintegrability: the symmetry of solvable systems, IOP Publishing, Bristol, 2018 | MR | Zbl

[9] L.V.Ovsyannikov, Lectures on basic gas dynamics, Institute of Computer Studies, M.–Izhevsk, 2003 (in Russian)

[10] L.D.Landau, E.M.Lifshitz, Fluid Mechanics, Elsevier, 2013 | MR

[11] O.V.Kaptsov, “Contact Mappings of Jet Spaces”, Journal of Siberian Federal University. Mathematics Physics, 16:5 (2023), 583–590 | MR

[12] O.V.Kaptsov, Contact germs and partial differential equations, 2024, arXiv: 2404.01955