Conversion of Cr(III) and Co(III) during the synthesis of Co/Cr codoped bismuth niobate pyrochlore according to NEXAFS data
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 559-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cubic pyrochlore of the composition Bi$_{2}$Co$_{0.5}$Cr$_{0.5}$Nb$_{2}$O$_{9+\Delta}$ (sp. gr. Fd-3m, a = 10.4838(8) Å) was synthesized in several stages using a solid-phase reaction from oxide precursors at a final temperature of 1050 $^\circ$С. Using NEXAFS spectroscopy data, the electronic state of cobalt and chromium ions during the synthesis process was studied. It has been established that before the formation of phase-pure pyrochlore, Cr(III) ions are converted to Cr(VI), and then again to Cr(III); Cobalt ions Co(III) are reduced to Co(II). NEXAFS Cr2p spectra of ceramics synthesized at 650 $^\circ$С, according to the main characteristics of the spectrum, coincide with the spectrum of K$_2$Cr$_2$O$_7$ and indicate the chromium content in the oxide ceramics in the form of tetrahedral CrO$_4^{2-}$ ions, and according to the nature of the Co2p spectrum, cobalt ions are in the Co(II) state and Co(III). In the composition of pyrochlore Bi$_{2}$Co$_{0.5}$Cr$_{0.5}$Nb$_{2}$O$_{9+\Delta}$, synthesized at 1050 $^\circ$С, cobalt and chromium appear predominantly in the form of Co(II) and Cr(III) ions. Analysis of phase transformations showed that changes in the oxidation state of transition element ions and the color of ceramics are associated with the formation of intermediate synthesis products.
Keywords: pyrochlore, bismuth niobate, cobalt.
Mots-clés : NEXAFS
@article{JSFU_2024_17_5_a0,
     author = {Ksenia A. Badanina and Sergey V. Nekipelov and Alexey M. Lebedev and Nadeezhda A. Zhuk and Dmitriy S. Beznosikov},
     title = {Conversion of {Cr(III)} and {Co(III)} during the synthesis of {Co/Cr} codoped bismuth niobate pyrochlore according to {NEXAFS} data},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {559--569},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a0/}
}
TY  - JOUR
AU  - Ksenia A. Badanina
AU  - Sergey V. Nekipelov
AU  - Alexey M. Lebedev
AU  - Nadeezhda A. Zhuk
AU  - Dmitriy S. Beznosikov
TI  - Conversion of Cr(III) and Co(III) during the synthesis of Co/Cr codoped bismuth niobate pyrochlore according to NEXAFS data
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 559
EP  - 569
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a0/
LA  - en
ID  - JSFU_2024_17_5_a0
ER  - 
%0 Journal Article
%A Ksenia A. Badanina
%A Sergey V. Nekipelov
%A Alexey M. Lebedev
%A Nadeezhda A. Zhuk
%A Dmitriy S. Beznosikov
%T Conversion of Cr(III) and Co(III) during the synthesis of Co/Cr codoped bismuth niobate pyrochlore according to NEXAFS data
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 559-569
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a0/
%G en
%F JSFU_2024_17_5_a0
Ksenia A. Badanina; Sergey V. Nekipelov; Alexey M. Lebedev; Nadeezhda A. Zhuk; Dmitriy S. Beznosikov. Conversion of Cr(III) and Co(III) during the synthesis of Co/Cr codoped bismuth niobate pyrochlore according to NEXAFS data. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 559-569. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a0/

[1] C.C.Khaw, K.B.Tan, C.K.Lee, “High temperature dielectric properties of cubic bismuth zinc tantalate”, Ceram. Intern., 35 (2009), 1473–1480 | DOI

[2] G.Giampaoli, T.Siritanon, B.Day, J.Li, M.A.Subramanian, “Temperature independent low loss dielectrics based on quaternary pyrochlore oxides”, Prog. Solid State Chem., 50 (2018), 16–23 | DOI

[3] H.Du, X.Yao, “Structural trends and dielectric properties of Bi-based pyrochlores”, J. Mater. Sci. Mater. Electron., 15 (2004), 613–616

[4] M.A.Subramanian, G.Aravamudan, G.V.Subba Rao, “Oxide pyrochlores - a review”, Prog. Solid State Chem., 15 (1983), 55–143 | DOI

[5] S.Kamba, V.Porokhonskyy, A.Pashkin and ets., “Anomalous broad dielectric relaxation in Bi$_{1.5}$Zn$_{1.0}$Nb$_{1.5}$O$_{7}$ pyrochlore”, Phys. Rev. B., 66 (2002), 054106 | DOI

[6] M.Valant, “Dielectric Relaxations in Bi$_2$O$_3$-Nb$_2$O$_5$-NiO Cubic Pyrochlores”, J. Am. Ceram. Soc., 92 (2009), 955–958 | DOI

[7] P.Y.Tan, K.B.Tan, C.C.Khaw, Z.Zainal, S.K.Chen, M.P.Chon, “Phase equilibria and dielectric properties of Bi$_{3+(5/2)x}$Mg$_{2-x}$Nb$_{3-(3/2)x}$O$_{14-x}$ cubic pyrochlores”, Ceram. Intern., 40 (2014), 4237–4246 | DOI

[8] M.W.Lufaso, T.A.Vanderah, I.M.Pazos, I.Levin, R.S.Roth, J.C.Nino, V.Provenzano, P.K.Schenck, “Phase formation, crystal chemistry, and properties in the system Bi$_2$O$_3$-Fe$_2$O$_3$-Nb$_2$O$_5$”, J. Sol. St. Chem., 179 (2006), 3900–3910 | DOI

[9] T.A.Vanderah, M.W.Lufaso, A.U.Adler, I.Levin, J.C.Nino, V.Provenzano, P.K.Schenck, “Subsolidus phase equilibria and properties in the system Bi$_2$O$_3$:Mn$_2$O$_3\pm$x:Nb$_2$O$_5$”, J. Sol. St. Chem., 179 (2006), 3467–347 | DOI

[10] I.Levin, T.G.Amos, J.C.Nino, T.A.Vanderah, C.A.Randall, M.T.Lanagan, “Structural Study of an Unusual Cubic Pyrochlore Bi$_{1.5}$Zn$_{0.92}$Nb$_{1.5}$O$_{6.92}$”, J. Sol. St. Chem., 168 (2002), 69–75 | DOI

[11] H.B.Nguyen, L.Noren, Y.Liu, R.L.Withers, X.R.Wei, M.M.Elcombe, “The disordered structures and low temperature dielectric relaxation properties of two misplaced-displacive cubic pyrochlores found in the Bi$_2$O$_3$-MO-Nb$_2$O$_5$ (M = Mg, Ni) systems”, J. Sol. St. Chem., 180 (2007), 2558–2565 | DOI

[12] E.P.Rylchenko, B.A.Makeev, D.V.Sivkov, R.I.Korolev, N.A.Zhuk, “Features of phase formation of pyrochlore-type Bi$_{2}$Cr$_{1/6}$Mn$_{1/6}$Fe$_{1/6}$Co$_{1/6}$Ni$_{1/6}$Cu$_{1/6}$Ta$_2$O$_{9+\Delta}$”, Lett. Mater., 12 (2022), 486–492 | DOI

[13] N.A.Zhuk, K.A.Badanina, R.I.Korolev, B.A.Makeev, M.G.Krzhizhanovskaya, V.V.Kharton, “Phase Formation of Co and Cr Co-Doped Bismuth Niobate with Pyrochlore Structure”, Inorganics, 11 (2023), 288 | DOI

[14] L.G.Akselrud, Yu.N.Grin, P.Yu.Zavalij et al., “CSD-universal program package for single crystal or powder structure data treatment”, Thes. Rep. XII Eur. Crystallogr. Meet., 1989, 155

[15] J.C.Nino, M.T.Lanagan, C.A.Randa, “Phase formation and reactions in the Bi$_2$O$_3$-ZnO-Nb$_2$O$_5$-Ag pyrochlore system”, J. Mater. Res., 16 (2001), 1460–1464 | DOI

[16] N.A.Zhuk, S.Yu.Kovalenko, R.I.Korolev, B.A.Makeev, M.G.Krzhizhanovskaya, D.V.Sivkov, S.V.Nekipelov, V.N.Sivkov, M.V.Yermolina, “Features of Phase Formation of Pyrochlore-type Ceramics Bi$_2$Mg(Zn)$_{1-x}$Ni$_x$Ta$_2$O$_9$”, ACS Omega, 8 (2023), 11351–11363 | DOI

[17] K.N.Parshukova, E.P.Rylchenko, V.A.Muravyev, K.A.Badanina, B.A.Makeev, R.I.Korolev, N.A.Zhuk, “Synthesis of multicomponent compounds with a pyrochlore structure”, Glass and ceramics, 95 (2022), 34–39

[18] J.A.Da Cruz, E.A.Volnistem, R.F.Ferreira, F D.B.reitas, A.J.M.Sales, L.C.Costa, M.P.F.Graca, “Structural characterization of Brazilian niobium pentoxide and treatment to obtain the single phase (H-Nb$_2$O$_5$)”, Thermal Sci. Engineering Progr., 25 (2021), 101015 | DOI

[19] J.Gopalakrishnan, R A.amanan, C.N.R.Rao, D.A.Jefferson, J.Smith David, “A homologous series of recurrent intergrowth structures of the type Bi$_{4}$A$_{m+n-2}$B$_{m+n}$O$_{3(m+n)+6}$ formed by oxides of the aurivillius family”, Sol. St. Chem., 55 (1984), 101–105 | DOI

[20] J.Grins, S.Esmaeilzadeh, S.Hull, “Structure and Ionic Conductivity of Bi$_6$Cr$_2$O$_{15}$, a New Structure Type Containing (Bi$_{12}$O$_{14}$)$_{8n+n}$ Columns and CrO$_4^{2-}$ Tetrahedra”, Journal of Solid State Chemistry, 163 (2002), 144–150 | DOI

[21] Y.H.Liu, J.B.Li, J.K.Lianga, J.Luo, L.N.Ji, J.Y.Zhang, G.H.Rao, “Phase diagram of the Bi$_2$O$_3$-Cr$_2$O$_3$ system”, Mater. Chem. Phys., 112 (2008), 239–243 | DOI

[22] R.S.Roth, J.L.Waring, “Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO$_4$ compounds”, Am. Mineral., 48 (1963), 1348–1356

[23] N.A.Zhuk, M.G.Krzhizhanovskaya, V.A.Belyy, B.A.Makeev, “High-Temperature Crystal Chemistry of $\alpha$-, $\beta$-, and $\gamma$-BiNbO$_4$ Polymorphs”, Inorg. Chem., 58 (2019), 1518–1526 | DOI

[24] S.-Y.Jeong, J.-B.Lee, H.Na, T.-Y.Seong, “Epitaxial growth of Cr$_2$O$_3$ thin film on Al$_2$O$_3$ (0001) substrate by radio frequency magnetron sputtering combined with rapid-thermal annealing”, Thin Solid Films, 518 (2010), 4813–4816 | DOI

[25] H.A.Bullen, S.J.Garrett, “CrO$_2$ by XPS: Comparison of CrO$_2$ Powder to CrO$_2$ Films on TiO$_2$ (110) Single Crystal Surfaces”, Surf. Sci. Spectra, 8 (2001), 225–233 | DOI

[26] C.Theil, J.Van Elp, F.Folkmann, “Ligand field parameters obtained from and chemical shifts observed at the Cr L2,3 edges”, Physical Review B, 59:12 (1999), 7931–7936 | DOI

[27] Y.Ito, T.Tochio, A.M.Vlaicu and ets., “The contribution of the ligands around Cr to the resonant inelastic L X-ray emission spectra”, J. Electron Spectroscopy and Related Phenomena, 101-103 (1999), 851–858 | DOI

[28] M.Struzik, X.Liu, I.Abrahams, F.Krok, M.Malys, J.R.Dygas, “Defect structure and electrical conductivity in the pseudo-binary system Bi$_3$TaO$_7$-Bi$_3$NbO$_7$”, Solid State Ionics, 218 (2012), 25–30 | DOI

[29] T.J.Regan, H.Ohldag, C.Stamm, F.Nolting, J.Luning, J.Stöhr, W R.L.hite, “Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy”, Phys. Rev. B, 64 (2001), 214422 | DOI

[30] T.A.Vanderah, T.Siegrist, M.W.Lufaso, M.C.Yeager, R.S.Roth, J.C.Nino, S.Yates, “Phase Formation and Properties in the System Bi$_2$O$_3$:2CoO$_{1+x}$:Nb$_2$O$_5$”, Eur. J. Inorgan. Chem., 2006 (2006), 4908–4914 | DOI

[31] B.Bingyang, A.Hamidreza, L.Junhua, “Comparison of the performance for oxidation of formaldehyde on nano-Co$_3$O$_4$, 2D-Co$_3$O$_4$, and 3D-Co$_3$O$_4$ catalysts”, Applied Catalysis B: Environmental, 142-143 (2013), 677–683

[32] I.V.Piir, D.A.Prikhodko, S.V.Ignatchenko, A.V.Schukariov, “Preparation and structural investigations of the mixed bismuth niobates, containing transition metals”, Sol. St. Ion., 101-103 (1997), 1141–1146 | DOI

[33] R.D.Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallogr. A, 32 (1976), 751–767 | DOI

[34] N.A.Zhuk, N.A.Sekushin, M.G.Krzhizhanovskaya and ets., “Sr-doped bismuth tantalate pyrochlore: electrical and thermal properties, crystal structure and ESR, NEXAFS, XPS spectroscopy”, Mater. Res. Bull., 158 (2023), 112067 | DOI

[35] N.A.Zhuk, M.G.Krzhizhanovskaya, A.V.Koroleva and ets., “Cr and Mg codoped bismuth tantalate pyrochlores: Thermal expansion and stability, crystal structure, electrical and optical properties, NEXAFS and XPS study”, J. Sol. St. Chem., 323 (2023), 124074 | DOI

[36] N.A.Zhuk, K M.G.rzhizhanovskaya, A.V.Koroleva and ets., “Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore”, Sol. St. Sci., 125 (2022), 106820 | DOI

[37] N.A.Zhuk, M.G.Krzhizhanovskaya, N.A.Sekushin, D.V.Sivkov, I.EAbdurakhmanov, “Crystal structure, dielectric and thermal properties of cobalt doped bismuth tantalate pyrochlore”, J. Mater. Res. Technol., 22 (2023), 1791–1799 | DOI