Some classes of sets sufficient for holomorphic continuation of integrable functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 506-512

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work we consider integrable functions defined on a boundary of a bounded domain $D$ in ${{\mathbb{C}}^{n}}$, $n>1$, and possessing a generalized Morera boundary property. We show that such functions possess a holomorphic continuation into the domain $D$ for some sufficient sets $\Gamma$ of complex lines.
Keywords: holomorphic continuation, Morera boundary condition, Bochner–Martinelli kernel.
@article{JSFU_2024_17_4_a8,
     author = {Bakhodir A. Shoimkhulov and Baymurat J. Kutlimuratov},
     title = {Some classes of sets sufficient for holomorphic continuation of integrable functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {506--512},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/}
}
TY  - JOUR
AU  - Bakhodir A. Shoimkhulov
AU  - Baymurat J. Kutlimuratov
TI  - Some classes of sets sufficient for holomorphic continuation of integrable functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 506
EP  - 512
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/
LA  - en
ID  - JSFU_2024_17_4_a8
ER  - 
%0 Journal Article
%A Bakhodir A. Shoimkhulov
%A Baymurat J. Kutlimuratov
%T Some classes of sets sufficient for holomorphic continuation of integrable functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 506-512
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/
%G en
%F JSFU_2024_17_4_a8
Bakhodir A. Shoimkhulov; Baymurat J. Kutlimuratov. Some classes of sets sufficient for holomorphic continuation of integrable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 506-512. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/