Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_4_a8, author = {Bakhodir A. Shoimkhulov and Baymurat J. Kutlimuratov}, title = {Some classes of sets sufficient for holomorphic continuation of integrable functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {506--512}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/} }
TY - JOUR AU - Bakhodir A. Shoimkhulov AU - Baymurat J. Kutlimuratov TI - Some classes of sets sufficient for holomorphic continuation of integrable functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 506 EP - 512 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/ LA - en ID - JSFU_2024_17_4_a8 ER -
%0 Journal Article %A Bakhodir A. Shoimkhulov %A Baymurat J. Kutlimuratov %T Some classes of sets sufficient for holomorphic continuation of integrable functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 506-512 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/ %G en %F JSFU_2024_17_4_a8
Bakhodir A. Shoimkhulov; Baymurat J. Kutlimuratov. Some classes of sets sufficient for holomorphic continuation of integrable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 506-512. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/
[1] E.A.Grinberg, “A boundary analogue of Morera's theorem in the unit ball of $C^n$”, Proceedings of the American Society, 102:1 (1988), 114–116 | MR | Zbl
[2] M.L.Agranovskii, R.E.Valskii, “Maximality of invariant algebras of functions”, Siberian Mathematical Journ, 12:1 (1971), 1–7 | DOI | MR
[3] J.Globevnik, E.L.Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Mathematical Journal, 64:3 (1991), 571–615 | DOI | MR | Zbl
[4] J.Globevnik, “A boundary Morera theorem”, Jounal of Geometric Analysis, 3:3 (1993), 269–277 | DOI | MR | Zbl
[5] D.Govekar-Leban, “Local boundary Morera theorems”, Mathematische Zeitschrift, 233 (2000), 265–286 | DOI | MR | Zbl
[6] S.G.Myslivets, “One boundary version of Morera's theorem”, Siberian Mathematical Journal, 42:5 (2001), 952–960 | DOI | MR | Zbl
[7] A.M.Kytmanov, S.G.Myslivets, “On families of complex lines sufficient for holomorphic extension”, Mathematical Notes, 83:4 (2008), 500–505 | DOI | MR | Zbl
[8] A.M.Kytmanov, S.G.Myslivets, “Some families of complex lines sufficient for holomorphic extension of functions”, Russian Mathematic (Iz. VUZ), 55:4 (2011) | DOI | MR | Zbl
[9] A.M.Kytmanov, S.G.Myslivets, “On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain”, Ufa Mathematical Journal, 12:3 (2020), 45–50 | DOI | MR | Zbl
[10] A.M.Kytmanov, S.G.Myslivets, “On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property”, Udmurd University Journal, 33:3 (2023), 483-496 (in Russian) | MR | Zbl
[11] B.P.Otemuratov, “On functions with one-dimensional holomorphic extension property”, Vestnik KrasGU, 2006, no. 9, 95–100
[12] B.T.Kurbanov, “Morera's Boundary Theorem in Siegel Domain of the First Kind”, J. Sib. Fed. Univ. Math. Phys., 15:2 (2022), 255–262 | DOI | MR | Zbl
[13] A.M.Kytmanov, S.G.Myslivets, Multidimensional Integral Representations, Problems of Analytic Continuation, Springer Verlag, Basel–Boston, 2015 | MR | Zbl
[14] K.Ghudayberganov, A.M.Kytmanov, B.A.Shaymkulov, Analysis in matrix domains, Siberian Federal University, Institute of Mathematics and Fundamental Informatics, SFU, Krasnoyarsk, 2017 (in Russian)