Some classes of sets sufficient for holomorphic continuation of integrable functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 506-512
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present work we consider integrable functions defined on a boundary of a bounded domain $D$ in ${{\mathbb{C}}^{n}}$, $n>1$, and possessing a generalized Morera boundary property. We show that such functions possess a holomorphic continuation into the domain $D$ for some sufficient sets $\Gamma$ of complex lines.
Keywords:
holomorphic continuation, Morera boundary condition, Bochner–Martinelli kernel.
@article{JSFU_2024_17_4_a8,
author = {Bakhodir A. Shoimkhulov and Baymurat J. Kutlimuratov},
title = {Some classes of sets sufficient for holomorphic continuation of integrable functions},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {506--512},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/}
}
TY - JOUR AU - Bakhodir A. Shoimkhulov AU - Baymurat J. Kutlimuratov TI - Some classes of sets sufficient for holomorphic continuation of integrable functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 506 EP - 512 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/ LA - en ID - JSFU_2024_17_4_a8 ER -
%0 Journal Article %A Bakhodir A. Shoimkhulov %A Baymurat J. Kutlimuratov %T Some classes of sets sufficient for holomorphic continuation of integrable functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 506-512 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/ %G en %F JSFU_2024_17_4_a8
Bakhodir A. Shoimkhulov; Baymurat J. Kutlimuratov. Some classes of sets sufficient for holomorphic continuation of integrable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 506-512. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a8/