NEXAFS and XPS spectra of Ьn doped bismuth magnesium tantalate pyrochlores
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 544-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to X-ray powder phase analysis, Bi$_2$Mg$_x$Mn$_{1-x}$Ta$_2$O$_{9.5-\Delta}$ (x=0.3;0.5;0.7) samples synthesized using ceramic technology contain the main phase of cubic pyrochlore (space group Fd-3m) and the impurity phase BiTaO$_4$ of the triclinic modification (sp. Gr. P-1), the content of which is proportional to the degree of doping with manganese. The unit cell parameter of the pyrochlore phase increases uniformly with increasing index x(Mg) from 10.4970(8) at x=0.3 to 10.5248(8) Å (x=0.7), obeying the Vegard rule. The electronic state of all ions included in Bi$_2$Mg$_x$Mn$_{1-x}$Ta$_2$O$_{9.5-\Delta}$ was studied using X-ray spectroscopy. According to NEXAFS and XPS data, it was established that doping with magnesium does not change the oxidation state of bismuth and tantalum in pyrochlore. Meanwhile, in the Ta4f$_-$, Bi4f$_{7/2}$ and Bi4$_{f5/2}$ spectra of the samples, an energy shift of the absorption bands towards lower energies is observed, which is typical for bismuth and tantalum ions with an effective charge of (+3-$\delta$) and (+5-$\delta$), caused by the distribution of manganese(II) and magnesium(II) ions in the position of bismuth and tantalum. According to NEXAFS and XPS spectroscopy, manganese ions in the samples have oxidation states predominantly +2 and +3, the proportion of which increases with increasing manganese content in the samples.
Keywords: pyrochlore, Zn,Mg doping, XPS and NEXAFS spectroscopy.
Mots-clés : BiTaO$_4$
@article{JSFU_2024_17_4_a13,
     author = {Nadezhda A. Zhuk and Sergey V. Nekipelov and Alexandra V. Koroleva and Alexey M. Lebedev and Dmitriy S. Beznosikov},
     title = {NEXAFS and {XPS} spectra of {{\CYRSFTSN}n} doped bismuth magnesium tantalate pyrochlores},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {544--553},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a13/}
}
TY  - JOUR
AU  - Nadezhda A. Zhuk
AU  - Sergey V. Nekipelov
AU  - Alexandra V. Koroleva
AU  - Alexey M. Lebedev
AU  - Dmitriy S. Beznosikov
TI  - NEXAFS and XPS spectra of Ьn doped bismuth magnesium tantalate pyrochlores
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 544
EP  - 553
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a13/
LA  - en
ID  - JSFU_2024_17_4_a13
ER  - 
%0 Journal Article
%A Nadezhda A. Zhuk
%A Sergey V. Nekipelov
%A Alexandra V. Koroleva
%A Alexey M. Lebedev
%A Dmitriy S. Beznosikov
%T NEXAFS and XPS spectra of Ьn doped bismuth magnesium tantalate pyrochlores
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 544-553
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a13/
%G en
%F JSFU_2024_17_4_a13
Nadezhda A. Zhuk; Sergey V. Nekipelov; Alexandra V. Koroleva; Alexey M. Lebedev; Dmitriy S. Beznosikov. NEXAFS and XPS spectra of Ьn doped bismuth magnesium tantalate pyrochlores. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 544-553. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a13/

[1] Z.Hiroi, J.-I.Yamaura, Y S.onezawa, H.Harima, “Chemical trends of superconducting properties in pyrochlore oxides”, Physica C: Superconductivity and Appl., 460-462 (2007), 20–27 | DOI

[2] P.F.ABongers, E.R.Meurs, “Ferromagnetism in Compounds with Pyrochlore Structure”, J. Appl. Phys., 38 (1967), 944–945 | DOI

[3] H.Du, X.Yao, “Structural trends and dielectric properties of Bi-based pyrochlores”, J. Mater. Sci. Mater. Electron., 15 (2004), 613–616 | DOI

[4] C.C.Khaw, K.B.Tan, C.K.Lee, “High temperature dielectric properties of cubic bismuth zinc tantalite”, Ceram. Intern., 35 (2009), 1473–1480 | DOI

[5] R.A.McCauley, “Structural Characteristics of Pyrochlore Formation”, J. Appl. Phys., 51 (1980), 290–294 | DOI

[6] T.A.Vanderah, T.Siegrist, M.W.Lufaso, M.C.Yeager, R.S.Roth, J.C.Nino, S.Yates, “Phase Formation and Properties in the System Bi$_2$O$_3$:2CoO$_{1+x}$:Nb$_2$O$_5$”, Eur. J. Inorgan. Chem., 2006 (2006), 4908–4914 | DOI

[7] T.A.Vanderah, M.W.Lufaso, A.U.Adler, I.Levin, J.C.Nino, V.Provenzano, P.K.Schenck, “Subsolidus phase equilibria and properties in the system Bi$_2$O$_3$:Mn$_2$O$_3\pm$x:Nb$_2$O$_5$”, J. Sol. St. Chem., 179 (2006), 3467–347 | DOI

[8] F.A.Jusoh, T K.B.an, Z Z.ainal, S.K.Chen, C.C.Khaw, O.J.Lee, “Novel pyrochlores in the Bi$_2$O$_3$-Fe$_2$O$_3$-Ta$_2$O$_5$ (BFT) ternary system: synthesis, structural and electrical properties”, J. Mater. Res. Techn., 9 (2020), 11022–11034 | DOI

[9] P.Y.Tan, K.B.Tan, C.C.Khaw, Z.Zainal, S.K.Chen, M.P.Chon, “Phase equilibria and dielectric properties of Bi$_{3+(5/2)x}$Mg$_{2-x}$Nb$_{3-(3/2)x}$O$_{14-x}$ cubic pyrochlores”, Ceram. Intern., 40 (2014), 4237–4246 | DOI

[10] C.C.Khaw, K.B.Tan, C.K.Lee, A.R.West, “Phase equilibria and electrical properties of pyrochlore and zirconolite phases in the Bi$_2$O$_3$-ZnO-Ta$_2$O$_5$ system”, J. Eur. Ceram. Soc., 32 (2012), 671–680 | DOI

[11] A.M.Lebedev, K.A.Menshikov, V.G.Nazin, V.G.Stankevich, Tsetlin M.B., Chumakov R.G., “NanoPES Photoelectron Beamline of the Kurchatov Synchrotron Radiation Source”, J. Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 15 (2021), 1039–1044 | DOI

[12] N.A.Zhuk, M.G.Krzhizhanovskaya, V.A.Belyy, V.V.Kharton, A.I.Chichineva, “Phase transformations and thermal expansion of $\alpha$- and $\beta$-BiTaO$_4$ and the high-temperature modification $\gamma$-BiTaO$_4$”, Chem. Mater., 32 (2020), 5943–5501 | DOI

[13] Z N.A.huk, K M.G.rzhizhanovskaya, A.V.Koroleva, etc., “Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and $^{57}$Fe Mössbauer Spectroscopy Study”, J. Mater. Res., 11 (2023), 8 | DOI

[14] N.A.Zhuk, M.G.Krzhizhanovskaya, N.A.Sekushin, V.V.Kharton, etc., “Novel Ni-Doped Bismuth-Magnesium Tantalate Pyrochlores: Structural and Electrical Properties, Thermal Expansion, X-ray Photoelectron Spectroscopy, and Near-Edge X-ray Absorption Fine Structure Spectra”, ACS Omega, 6 (2021), 23262–23273 | DOI

[15] N.A.Zhuk, M.G.Krzhizhanovskaya, A.V.Koroleva, etc., “Cr and Mg codoped bismuth tantalate pyrochlores: Thermal expansion and stability, crystal structure, electrical and optical properties, NEXAFS and XPS study”, J. Sol. St. Chem., 323 (2023), 124074 | DOI

[16] N.A.Zhuk, M.G.Krzhizhanovskaya, N.A.Sekushin, D.V.Sivkov, I.E.Abdurakhmanov, “Crystal structure, dielectric and thermal properties of cobalt doped bismuth tantalate pyrochlore”, J. Mater. Res. Technol., 22 (2023), 1791–1799 | DOI

[17] R.D.Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallogr. A, 32 (1976), 751–767 | DOI

[18] R.Grissa, H.Martinez, S.Cotte, J.Galipaud, B.Pecquenard, F.L.Cras, “Thorough XPS analyses on overlithiated manganese ,spinel cycled around the 3V plateau”, Appl. Surface Science, 411 (2017), 449–456 | DOI

[19] M.A.Stranick, “Mn2O3 by XPS”, Surface Science Spectra, 6 (1999), 39–46 | DOI

[20] F.Gri, L.Bigiani, A.Gasparotto, C.Maccato, D.Barreca, “XPS investigation of F-doped MnO$_2$ nanosystems fabricated by plasma assisted-CVD”, Surface Science Spectra, 25 (2018), 024004 | DOI

[21] F.Khairallah, A.Glisenti, “XPS Study of MgO Nanopowders Obtained by Different Preparation Procedures”, Surface Science Spectra, 13 (2006), 58–71 | DOI

[22] N.A.Zhuk, M.G.Krzhizhanovskaya, A.V.Koroleva, etc., “Su, Mg codoped bismuth tantalate pyrochlores: crystal structure, XPS spectra, thermal expansion and electrical properties”, Inorg. Chem., 61 (2022), 4270–4282 | DOI