Maximal functions and the Dirichlet problem in the class of $m$-convex functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 519-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we introduce the concept of maximal $m$-convex $(m-cv)$ functions and we solve the Dirichlet Problem with a given continuous boundary function for strictly $m$-convex domains $D\subset {\mathbb R}^{n} $. We prove that for the solution of the Dirichlet problem in the class of $m-cv$ functions its Hessian $H_{\omega }^{n-m+1} =0$ in the domain $D$.
Keywords: subharmonic functions, convex functions, $m$-convex functions, Borel measures, Hessians.
@article{JSFU_2024_17_4_a10,
     author = {Azimbay Sadullaev and Rasulbek Sharipov},
     title = {Maximal functions and the {Dirichlet} problem in the class of $m$-convex functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {519--527},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/}
}
TY  - JOUR
AU  - Azimbay Sadullaev
AU  - Rasulbek Sharipov
TI  - Maximal functions and the Dirichlet problem in the class of $m$-convex functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 519
EP  - 527
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/
LA  - en
ID  - JSFU_2024_17_4_a10
ER  - 
%0 Journal Article
%A Azimbay Sadullaev
%A Rasulbek Sharipov
%T Maximal functions and the Dirichlet problem in the class of $m$-convex functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 519-527
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/
%G en
%F JSFU_2024_17_4_a10
Azimbay Sadullaev; Rasulbek Sharipov. Maximal functions and the Dirichlet problem in the class of $m$-convex functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 519-527. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/

[1] Akademie Verlag, Berlin, 1955 | MR | Zbl

[2] A.D. Aleksandrov, “Dirichlet's problem for the equation $\det (z_{ij} )=\varphi $”, Vestnic Leningrad University, 13 (1958), 5–24 | MR | Zbl

[3] I.J. Bakelman, “Variational problems and elliptic Monge-Ampere equations”, J. Diff. Geo., 18 (1983), 669–999 | MR

[4] I.J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer Verlage, New York, 1994 | MR | Zbl

[5] Amer. Math. Soc., Providence, R. I., 1973 | MR | Zbl

[6] Z. Błocki, “The domain of definition of the complex Monge-Ampere operator”, Amer. J. Math., 128:2 (2006), 519–530 | DOI | MR

[7] S. Dinew, S. Kolodziej, “A priori estimates for the complex Hessian equation”, Anal. PDE, 7 (2014), 227–244 | DOI | MR | Zbl

[8] S.Y. Li, “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J.Math., 8 (2004), 87–106 | DOI | MR | Zbl

[9] H.Ch. Lu, “Solutions to degenerate Hessian equations”, Journal de Mathematique Pures et Appliques, 100:6 (2013), 785–805 | DOI | MR | Zbl

[10] H.Ch. Lu, V.D. Nguyen, “Degenerate complex Hessian equations on compact Kaehler manifolds”, Indiana University Mathematics Journal, 64:6 (2015), 1721–1745 | DOI | MR | Zbl

[11] A. Sadullaev, B. Abdullaev, “Potential theory in the class of $m$-subharmonic functions”, Analytic and geometric issues of complex analysis, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, M., 2012, 155–180 | DOI | MR

[12] A.S. Sadullaev, B.I. Abdullaev, “Capacities and Hessians in the class of m-subharmonic functions”, Dokl. Math., 87 (2013), 88–90 | DOI | MR | Zbl

[13] A. Sadullaev, Definition of Hessians for $m$-convex functions as Borel measures (to appear)

[14] R.A. Sharipov, M.B. Ismoilov, “$m$-convex ($m-cv$) functions”, Azerbaijan Journal of Mathematics, 13:2 (2023), 237–247 | DOI | MR

[15] R.A. Sharipov, M.B. Ismoilov, Hessian measures in the class of $m$-convex $(m-cv)$ functions, Preprint | MR

[16] L. Caffarelly, L. Nirenberg, J. Spruck, “Functions of the eigenvalues of the Hessian”, Acta Math., 155 (1985), 261–301 | DOI | MR

[17] N. Ivochkina, N.S. Trudinger, X.J. Wang, “The Dirichlet problem for degenerate Hessian equations”, Comm. Partial Diff. Equations, 29 (2004), 219–235 | DOI | MR | Zbl

[18] N.S. Trudinger, X.J.Wang, “Hessian measures I”, Topol. Methods Nonlinear Anal., 10 (1997), 225–239 | DOI | MR | Zbl

[19] N.S. Trudinger, X.J.Wang, “Hessian measures II”, Anal. Math., 150 (1999), 579–604 | MR | Zbl

[20] N.S. Trudinger, X.J.Wang, “Hessian measures III”, J. Funct. Anal., 193 (2002), 1–23 | DOI | MR | Zbl

[21] X.J. Wang, K.S. Chou, “Variational theory for Hessian equations”, Comm. Pure Appl. Math., 54 (2001), 1029–1064 | DOI | MR | Zbl

[22] X.J. Wang, “The $k$-Hessian equations”, Lect. Notes Math., 1977, 2009 | MR