Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_4_a10, author = {Azimbay Sadullaev and Rasulbek Sharipov}, title = {Maximal functions and the {Dirichlet} problem in the class of $m$-convex functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {519--527}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/} }
TY - JOUR AU - Azimbay Sadullaev AU - Rasulbek Sharipov TI - Maximal functions and the Dirichlet problem in the class of $m$-convex functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 519 EP - 527 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/ LA - en ID - JSFU_2024_17_4_a10 ER -
%0 Journal Article %A Azimbay Sadullaev %A Rasulbek Sharipov %T Maximal functions and the Dirichlet problem in the class of $m$-convex functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 519-527 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/ %G en %F JSFU_2024_17_4_a10
Azimbay Sadullaev; Rasulbek Sharipov. Maximal functions and the Dirichlet problem in the class of $m$-convex functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 519-527. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a10/
[1] Akademie Verlag, Berlin, 1955 | MR | Zbl
[2] A.D. Aleksandrov, “Dirichlet's problem for the equation $\det (z_{ij} )=\varphi $”, Vestnic Leningrad University, 13 (1958), 5–24 | MR | Zbl
[3] I.J. Bakelman, “Variational problems and elliptic Monge-Ampere equations”, J. Diff. Geo., 18 (1983), 669–999 | MR
[4] I.J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer Verlage, New York, 1994 | MR | Zbl
[5] Amer. Math. Soc., Providence, R. I., 1973 | MR | Zbl
[6] Z. Błocki, “The domain of definition of the complex Monge-Ampere operator”, Amer. J. Math., 128:2 (2006), 519–530 | DOI | MR
[7] S. Dinew, S. Kolodziej, “A priori estimates for the complex Hessian equation”, Anal. PDE, 7 (2014), 227–244 | DOI | MR | Zbl
[8] S.Y. Li, “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J.Math., 8 (2004), 87–106 | DOI | MR | Zbl
[9] H.Ch. Lu, “Solutions to degenerate Hessian equations”, Journal de Mathematique Pures et Appliques, 100:6 (2013), 785–805 | DOI | MR | Zbl
[10] H.Ch. Lu, V.D. Nguyen, “Degenerate complex Hessian equations on compact Kaehler manifolds”, Indiana University Mathematics Journal, 64:6 (2015), 1721–1745 | DOI | MR | Zbl
[11] A. Sadullaev, B. Abdullaev, “Potential theory in the class of $m$-subharmonic functions”, Analytic and geometric issues of complex analysis, Trudy Mat. Inst. Steklova, 279, MAIK Nauka/Interperiodica, M., 2012, 155–180 | DOI | MR
[12] A.S. Sadullaev, B.I. Abdullaev, “Capacities and Hessians in the class of m-subharmonic functions”, Dokl. Math., 87 (2013), 88–90 | DOI | MR | Zbl
[13] A. Sadullaev, Definition of Hessians for $m$-convex functions as Borel measures (to appear)
[14] R.A. Sharipov, M.B. Ismoilov, “$m$-convex ($m-cv$) functions”, Azerbaijan Journal of Mathematics, 13:2 (2023), 237–247 | DOI | MR
[15] R.A. Sharipov, M.B. Ismoilov, Hessian measures in the class of $m$-convex $(m-cv)$ functions, Preprint | MR
[16] L. Caffarelly, L. Nirenberg, J. Spruck, “Functions of the eigenvalues of the Hessian”, Acta Math., 155 (1985), 261–301 | DOI | MR
[17] N. Ivochkina, N.S. Trudinger, X.J. Wang, “The Dirichlet problem for degenerate Hessian equations”, Comm. Partial Diff. Equations, 29 (2004), 219–235 | DOI | MR | Zbl
[18] N.S. Trudinger, X.J.Wang, “Hessian measures I”, Topol. Methods Nonlinear Anal., 10 (1997), 225–239 | DOI | MR | Zbl
[19] N.S. Trudinger, X.J.Wang, “Hessian measures II”, Anal. Math., 150 (1999), 579–604 | MR | Zbl
[20] N.S. Trudinger, X.J.Wang, “Hessian measures III”, J. Funct. Anal., 193 (2002), 1–23 | DOI | MR | Zbl
[21] X.J. Wang, K.S. Chou, “Variational theory for Hessian equations”, Comm. Pure Appl. Math., 54 (2001), 1029–1064 | DOI | MR | Zbl
[22] X.J. Wang, “The $k$-Hessian equations”, Lect. Notes Math., 1977, 2009 | MR