Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_4_a0, author = {Ilyas Haouam}, title = {A classical limit for the {Dirac} equation in the context of {Magueijo--Smolin} model of the doubly special relativity using the {Ehrenfest's} theorem}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {435--447}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a0/} }
TY - JOUR AU - Ilyas Haouam TI - A classical limit for the Dirac equation in the context of Magueijo--Smolin model of the doubly special relativity using the Ehrenfest's theorem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 435 EP - 447 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a0/ LA - en ID - JSFU_2024_17_4_a0 ER -
%0 Journal Article %A Ilyas Haouam %T A classical limit for the Dirac equation in the context of Magueijo--Smolin model of the doubly special relativity using the Ehrenfest's theorem %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 435-447 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a0/ %G en %F JSFU_2024_17_4_a0
Ilyas Haouam. A classical limit for the Dirac equation in the context of Magueijo--Smolin model of the doubly special relativity using the Ehrenfest's theorem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 435-447. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a0/
[1] P.A.Tipler, R.A.Llewellyn, Modern Physics, 5 ed., W. H. Freeman and Company, 2008, 160–161
[2] N.Bohr, “Über die Serienspektra der Elemente”, Z. Physik, 2 (1920), 423 | DOI
[3] P.Ehrenfest, “Bemerkung Über die angendherte Gltigkeit der klassischen Mechanik innerhalb der Quantenmechanik”, Z. Physik, 45 (1927), 455 | DOI
[4] G.Friesecke, M.Koppen, “On the Ehrenfest theorem of quantum mechanics”, J. Math. Phys., 50 (2009), 082102 | DOI | MR | Zbl
[5] H.Krger, “Classical limit of real Dirac theory: Quantization of relativistic central field orbits”, Found. Phys., 23 (1993), 1265 | DOI | MR
[6] W.R.Greenberg, A.Klein, C.T.Li, “Invariant tori and Heisenberg matrix mechanics: a new window on the quantum-classical correspondence”, Phys. Rep., 264:1-5 (1996), 167 | DOI | MR
[7] A.O.Bolivar, “Classical limit of fermions in phase space”, J. Math. Phys., 42:9 (2001), 4020 | DOI | MR | Zbl
[8] A.J.Makowski, “Exact classical limit of quantum mechanics: Central potentials and specific states”, Phys. Rev. A, 65:3 (2002), 032103 | DOI | MR
[9] K.G.Kay, “Exact wave functions from classical orbits. II. The Coulomb, Morse, Rosen-Morse, and Eckart systems”, Phys. Rev. A, 65:3 (2002), 032101 | DOI
[10] R.Alicki, “Search for a border between classical and quantum worlds”, Phys. Rev. A, 65:3 (2002), 034104 | DOI
[11] M.L.Liang, H.B.Wu, “Quantum and classical exact solutions of the time-dependent driven generalized harmonic oscillator”, Phys. Scr., 68:1 (2003), 41 | DOI | MR | Zbl
[12] M.L.Liang, Y.J.Sun, “Quantum-classical correspondence of the relativistic equations”, Ann. Phys., 314:1 (2004) | DOI | MR
[13] M.L.Liang et al., “Quantum-classical correspondence of the Dirac equation with a scalar-like potential”, Pramana. J. Phys., 72 (2009), 777 | DOI
[14] A.A.Hnilo, “Simple Explanation of the Classical Limit”, Found. Phys., 49 (1365), 1365 | DOI | MR
[15] H.Spohn, “Semiclassical limit of the Dirac equation and spin precession”, Ann. Phys., 282:2 (2000), 420 | DOI | MR | Zbl
[16] I.Haouam, L.Chetouani, “The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space”, J. Mod. Phys., 9 (2018), 2021 | DOI
[17] I.Haouam, “Foldy–Wouthuysen Transformation of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum”, Few-Body. Syst., 64:1 (2023), 9 | DOI
[18] G.Amelino-Camelia, “Testable scenario for relativity with minimum length”, Phys. Lett. B, 510:1-4 (2001), 255 | DOI | Zbl
[19] G.Amelino-Camelia, “Special treatment”, Nature, 418 (2002), 34 | DOI
[20] G.Amelino-Camelia, “Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale”, Int. J. Mod. Phys. D, 11:01 (2002), 35 | DOI | MR | Zbl
[21] J.Magueijo, L.Smolin, “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88 (2002), 190403 | DOI | MR
[22] J.Magueijo, L.Smolin, “Generalized Lorentz invariance with an invariant energy scale”, Phys. Rev. D, 67:4 (2003), 044017 | DOI | MR
[23] G.Amelino-Camelia, “Doubly-Special Relativity: Facts, Myths and Some Key Open Issues”, Symmetry, 2010:2 (2010), 230 | DOI | MR
[24] G.Gibbons, S.Gielen, “Deformed general relativity and torsion”, Class. Quantum Grav., 26 (2009), 135005 | DOI | MR | Zbl
[25] I.Haouam, “On the noncommutative geometry in quantum mechanics”, J. Phys. Stud., 24:2 (2020) | DOI
[26] J.Madore, “An introduction to noncommutative geometry”, Geometry and Quantum Physics, Lecture Notes in Physics, 543, eds. H. Gausterer, L. Pittner, H. Grosse, Springer, Berlin–Heidelberg, 2000 | DOI | MR
[27] I.Haouam, “On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time”, J. Phys. Stud., 24:1 (2020), 1801 | DOI
[28] I.Haouam, “Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space”, Acta. Polytech., 60:2 (2020), 111 | DOI
[29] N.Seiberg, E.Witten, “String theory and noncommutative geometry”, J. High. Energy. Phys., 1999:09 (1999), 032 | DOI | MR
[30] I.Haouam, “Dirac oscillator in dynamical noncommutative space”, Acta. Polytech., 61:6 (2021), 689 | DOI
[31] I.Haouam, “Two-dimensional Pauli equation in noncommutative phase-space”, Ukr. J. Phys., 66:9 (2021), 771 | DOI
[32] P.Martinetti, “Beyond the standard model with noncommutative geometry, strolling towards quantum gravity”, Journal of Physics: Conference Series, 634 (2015), 012001 | DOI
[33] I.Haouam, “On the three-dimensional Pauli equation in noncommutative phase-space”, Acta Polytech., 61:1 (2021), 230 | DOI
[34] I.Haouam, H.Hassanabadi, “Exact solution of (2+1)-dimensional noncommutative Pauli equation in a time-dependent background”, Int. J. Theor. Phys., 61:8 (2022), 215 | DOI | MR | Zbl
[35] D.M.Gingrich, “Noncommutative geometry inspired black holes in higher dimensions at the LHC”, J. High. Energy. Phys., 2010 (2010), 22 | DOI | MR
[36] I.Haouam, S.A.Alavi, “Dynamical noncommutative graphene”, Int. J. Mod. Phys. A, 37:10 (2022), 2250054 | DOI | MR
[37] I.Haouam, “Solutions of noncommutative two-dimensional position-dependent mass dirac equation in the presence of rashba spin-orbit interaction by using the Nikiforov-Uvarov Method”, Int. J. Theor. Phys., 62:6 (2023), 111 | DOI | MR
[38] B.Hamil et al., “Relativistic oscillators in the context of MS noncommutative model”, EPL, 131:1 (2020), 10003 | DOI
[39] S.Mignemi, A.Samsarov, “Vacuum energy from noncommutative models”, Phys. Lett. B, 779 (2018), 244 | DOI | Zbl
[40] M.Coraddu, S.Mignemi, “The nonrelativistic limit of the Magueijo-Smolin model of deformed special relativity”, EPL, 91:5 (2010), 51002 | DOI
[41] I.Haouam, “Classical limit and Ehrenfest's theorem versus non-relativistic limit of noncommutative Dirac equation in the presence of minimal uncertainty in momentum”, Int. J. Theor. Phys., 62:8 (2023), 189 | DOI | MR | Zbl
[42] I.Haouam, “Ehrenfest's theorem for the Dirac equation in noncommutative Phase-Space”, Math. Comput. Sci., 4:4 (2024), 53 | DOI
[43] H.S.Snyder, “Quantized space-time”, Phys. Rev., 71:1 (1947), 38 | DOI | MR | Zbl
[44] S.Majid, H.Ruegg, “Bicrossproduct structure of $\kappa$-Poincari group and noncommutative geometry”, Phys. Lett. B, 334:3-4 (1994), 348–354 | DOI | MR | Zbl
[45] J.Lukierski et al., “Quantum deformations of nonsemisimple algebras: the example of D=4 in homogeneous rotations”, J. Math. Phys., 35:5 (1994), 2607 | DOI | MR | Zbl
[46] D.Benedetti, “Fractal properties of quantum spacetime”, Phys. Rev. Lett., 102:11 (2009), 111303 | DOI | MR
[47] M.Arzano, T.Trześniewski, “Diffusion on $\kappa$-Minkowski space”, Phys. Rev. D, 89 (2014), 124024 | DOI
[48] A.Granik, Maguejo-Smolin transformation as a consequence of a specific definition of mass, velocity, and the upper limit on energy, 2002, arXiv: hep-th/0207113