On the bipolar classification of endomorphisms of a groupoid
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 378-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a method is obtained for calculating the bipolar type of endomorphism of an arbitrary groupoid. For groupoids with pairwise distinct left translations of elements, the described method for calculating the bipolar type of an endomorphism leads to a criterion for the fixed point of a given endomorphism. In particular, such groupoids include groupoids with a right neutral element, monoids, loops and groups. It turned out that the bipolar type of endomorphisms of a groupoid with pairwise distinct left translations ones contains all the information about the fixed points of endomorphisms of this type. A basic set of endomorphisms of a group is established, containing all regular automorphisms. A method is found for calculating the bipolar type of an inner automorphism of a monoid. We obtain upper bounds for the order of the monoid of all endomorphisms (and the group of all automorphisms) of an algebraic system with finite support that has a binary algebraic operation.
Keywords: bipolar type of regular automorphism, bipolar type of inner automorphism, conservative estimates.
Mots-clés : groupoid, groupoid endomorphism, groupoid automorphism, bipolar type of endomorphism of groupoid
@article{JSFU_2024_17_3_a8,
     author = {Andrey V. Litavrin},
     title = {On the bipolar classification of endomorphisms of a groupoid},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {378--387},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a8/}
}
TY  - JOUR
AU  - Andrey V. Litavrin
TI  - On the bipolar classification of endomorphisms of a groupoid
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 378
EP  - 387
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a8/
LA  - en
ID  - JSFU_2024_17_3_a8
ER  - 
%0 Journal Article
%A Andrey V. Litavrin
%T On the bipolar classification of endomorphisms of a groupoid
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 378-387
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a8/
%G en
%F JSFU_2024_17_3_a8
Andrey V. Litavrin. On the bipolar classification of endomorphisms of a groupoid. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 378-387. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a8/

[1] A.V.Litavrin, “On an element-by-element description of the monoid of all endomorphisms of an arbitrary groupoid and one classification of groupoid endomorphisms”, Proceedings of the Institute of Mathematics and Mechanics, Ural Branch of the Urals, 29:1 (2023), 143–159 | DOI | MR

[2] A.V.Litavrin, “On Anti-endomorphisms of Groupoids”, The Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 82–97 | DOI | MR | Zbl

[3] E.I.Bunina, P.P.Semenov, “Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings”, Fundamental and Applied Mathematics, 14:2 (2008), 69–100 | MR

[4] E.I.Bunina, K.Sosov, “Endomorphisms of semigroups of non-negative invertible matrices of order two over commutative ordered rings”, Fundamental and Applied Mathematics, 23:4 (2021), 39–53 | MR

[5] V.V.Nemiro, “Endomorphisms of semigroups of invertible non-negative matrices over ordered associative rings”, Vestn. Moscow university Ser. 1. Mathematicians, Mechanics, 2020, no. 5, 3–8 | MR | Zbl

[6] P.P.Semyonov, “Endomorphisms of semigroups of invertible non-negative matrices over ordered rings”, Fundamental and Applied Mathematics, 17:5 (2012), 165–178 | MR

[7] V.M.Levchuk, “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra and Logic, 29:3 (1990), 315–338 | DOI | MR | Zbl

[8] V.M.Levchuk, Automorphisms of unipotent subgroups of groups of Lie type of small ranks, Algebra and Logic, 29:2 (1990), 141–161 | DOI | MR | Zbl

[9] E.I.Bunina, “Automorphisms of Chevalley groups of types $A_l$, $D_l$, $E_l$ over local rings without 1/2”, Journal of Mathematical Sciences (New York), 169:5 (2009), 589–613 | DOI | MR

[10] E.I.Bunina, “Automorphisms of Chevalley groups of type $F_4$ over local rings with 1/2”, J. Algebra, 323:8 (2010), 2270–2289 | DOI | MR | Zbl

[11] S.G.Kolesnikov, “Automorphisms of Sylow $p$-Subgroups of Chevalley Groups Defined over Residue Rings of Integers”, Algebra and Logic, 43:1 (2004), 17–33 | DOI | MR | Zbl

[12] S.G.Kolesnikov, “Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers”, J. Math. Sci., 152:2 (2008), 220–246 | DOI | MR | Zbl

[13] V.M.Levchuk, G.S.Suleimanova, “Automorphisms and normal structure of unipotent subgroups of finitary Chevalley groups”, Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), 118–127 | DOI | MR

[14] G.V.Timofeenko, M.M.Glukhov, “The automorphism group of finitely presented quasigroups”, Mathematical Notes, 37:5 (1985), 617–626 | MR | Zbl

[15] A.V.Litavrin, “Endomorphisms of finite commutative groupoids associated with multilayer neural networks of direct distribution”, Trudy Instituta Matematiki I Mekhaniki, 27, no. 1, 2021, 130–145 | DOI | MR

[16] A.V.Litavrin, “On endomorphisms of the additive monoid of subnets of a two-layer neural network”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 111–126 | DOI | MR | Zbl

[17] A.Kh.Tabarov, “Homomorphisms and endomorphisms of linear and alinear quasigroups”, Discrete Mathematics, 19:2 (2007), 67–73 | MR | Zbl

[18] D.G.Khramtsov, “Endomorphisms of automorphism groups of free groups”, Algebra and Logic, 44:2 (2005), 211–237 | DOI | MR | Zbl

[19] A.P.Ilinykh, “Classification of finite groupoids with 2 transitive automorphism group”, Mat. Sat., 185:6 (1994), 51–78 | MR | Zbl

[20] A.P.Ilinykh, “Groupoids of order $q(q \pm 1)/2$, $q=2r$, having an automorphism group isomorphic to $SL(2,q)$”, Siberian Mathematical Journal, 36:6 (1995), 1336–1341 | MR | Zbl

[21] D.Hobby, D.Silberger, S.Silberger, “Automorphism groups of finite groupoids”, Algebra Univers, 64 (2002), 117–136 | DOI | MR

[22] Yu.V.Zhuchok, “Semigroups of endomorphisms of some free products”, Fundamental and Applied Mathematics, 17:3 (2012), 51–60 | MR | Zbl

[23] P.A.Krylov, A.V.Mikhalev, A.A.Tuganbaev, “Endomorphism Rings Of Abelian Groups”, Math. Sci., 110:3 (2002), 2683–2745 | DOI | MR | Zbl

[24] O.V.Kravtsova, “On automorphisms of semifields and semifield planes”, Siberian Electronic Mathematical Reports, 13 (2016), 1300–1313 | DOI | MR | Zbl

[25] O.V.Kravtsova, V.M.Levchuk, “Problems of the structure of finite near-fields”, Trudy Instituta Matematiki I Mekhaniki, Ural Branch of the Russian Academy of Sciences, 25:4 (2019), 107–117 | DOI | MR

[26] A.I.Maltsev, Algebraic systems, Nauka, M., 1970 | MR | Zbl