Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_3_a7, author = {Vladimir M. Leontiev}, title = {On the collection formulas for positive words}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {365--377}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a7/} }
TY - JOUR AU - Vladimir M. Leontiev TI - On the collection formulas for positive words JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 365 EP - 377 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a7/ LA - en ID - JSFU_2024_17_3_a7 ER -
Vladimir M. Leontiev. On the collection formulas for positive words. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 365-377. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a7/
[1] V.M.Leontiev, “On the collection process for positive words”, Sib. Electron. Math. Rep., 19:2 (2022), 439–459 | DOI | MR
[2] P.Hall, “A contribution to the theory of groups of prime-power order”, Proc. Lond. Math. Soc., 36:2 (1934), 29–95 | DOI | MR
[3] M.Hall Jr., The Theory of Groups, The Macmillan Co., New York, 1959 | MR | Zbl
[4] W.Magnus, A.Karras, D.Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience Publ., Wiley, New York, 1966 | MR | Zbl
[5] R.R.Struik, “On nilpotent products of cyclic groups. II”, Can. J. Math., 13 (1961), 557–568 | DOI | MR | Zbl
[6] H.V.Waldinger, “Two theorems in the commutator calculus”, Trans. Am. Math. Soc., 167 (1972), 389–397 | DOI | MR | Zbl
[7] A.M.Gaglione, “A commutator identity proved by means of the Magnus Algebra”, Houston J. Math., 5:2 (1979), 199–207 | MR | Zbl
[8] E.F.Krause, “On the collection process”, Proc. Amer. Math. Soc., 15:3 (1964), 497–504 | DOI | MR | Zbl
[9] E.F.Krause, “Groups of exponent 8 satisfy the 14th Engel congruence”, Proc. Amer. Math. Soc., 15:3 (1964), 491–496 | DOI | MR | Zbl
[10] A.I.Skopin, “A collection formula”, J. Math. Sci., 9 (1978), 337–341 | DOI | Zbl
[11] A.I.Skopin, “Jacobi identity and P. Hall's collection formula in two types of transmetabelian groups”, J. Math. Sci., 57 (1991), 3507–3512 | DOI | MR
[12] A.I.Skopin, “A graphic construction of the collection formula for certain types of groups”, J. Math. Sci., 63 (1993), 693–699 | DOI | MR
[13] A.I.Skopin, Y.G.Teterin, “Speeding up an algorithm to construct the Hall collection formula”, J. Math. Sci., 89 (1998), 1149–1153 | DOI | MR
[14] S.G.Kolesnikov, V.M.Leontiev, “One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem”, Sib. Electron. Math. Rep., 19:1 (2022), 138–163 | DOI | MR
[15] V.D.Mazurov (ed.), E.I.Huhro (ed.), The Kourovka notebook. Unsolved problems in group theory. Including archive of solved problems, 16th ed., Institute of Mathematics, Novosibirsk | MR
[16] V.M.Leontiev, “On the exponents of commutators from P. Hall's collection formula”, Trudy Inst. Mat. I Mekh. UrO RAN, 28:1 (2022), 182–198 (in Russian) | DOI | MR