On the collection formulas for positive words
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 365-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any formal commutator $R$ of a free group $F$, we constructively prove the existence of a logical formula $\mathcal{E}_R$ with the following properties. First, if we apply the collection process to a positive word $W$ of the group $F$, then the structure of $\mathcal{E}_R$ is determined by $R$, and the logical values of $\mathcal{E}_R$ are determined by $W$ and the arrangement of the collected commutators. Second, if the commutator $R$ was collected during the collection process, then its exponent is equal to the number of elements of the set $D(R)$ that satisfy $\mathcal{E}_R$, where $D(R)$ is determined by $R$. We provide examples of $\mathcal{E}_R$ for some commutators $R$ and, as a consequence, calculate their exponents for different positive words of $F$. In particular, an explicit collection formula is obtained for the word $(a_1 \ldots a_n)^m$, $n,m \geqslant 1$, in a group with the Abelian commutator subgroup. Also, we consider the dependence of the exponent of a commutator on the arrangement of the commutators collected during the collection process.
Keywords: commutator, collection process, free group.
@article{JSFU_2024_17_3_a7,
     author = {Vladimir M. Leontiev},
     title = {On the collection formulas for positive words},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {365--377},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a7/}
}
TY  - JOUR
AU  - Vladimir M. Leontiev
TI  - On the collection formulas for positive words
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 365
EP  - 377
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a7/
LA  - en
ID  - JSFU_2024_17_3_a7
ER  - 
%0 Journal Article
%A Vladimir M. Leontiev
%T On the collection formulas for positive words
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 365-377
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a7/
%G en
%F JSFU_2024_17_3_a7
Vladimir M. Leontiev. On the collection formulas for positive words. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 365-377. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a7/

[1] V.M.Leontiev, “On the collection process for positive words”, Sib. Electron. Math. Rep., 19:2 (2022), 439–459 | DOI | MR

[2] P.Hall, “A contribution to the theory of groups of prime-power order”, Proc. Lond. Math. Soc., 36:2 (1934), 29–95 | DOI | MR

[3] M.Hall Jr., The Theory of Groups, The Macmillan Co., New York, 1959 | MR | Zbl

[4] W.Magnus, A.Karras, D.Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience Publ., Wiley, New York, 1966 | MR | Zbl

[5] R.R.Struik, “On nilpotent products of cyclic groups. II”, Can. J. Math., 13 (1961), 557–568 | DOI | MR | Zbl

[6] H.V.Waldinger, “Two theorems in the commutator calculus”, Trans. Am. Math. Soc., 167 (1972), 389–397 | DOI | MR | Zbl

[7] A.M.Gaglione, “A commutator identity proved by means of the Magnus Algebra”, Houston J. Math., 5:2 (1979), 199–207 | MR | Zbl

[8] E.F.Krause, “On the collection process”, Proc. Amer. Math. Soc., 15:3 (1964), 497–504 | DOI | MR | Zbl

[9] E.F.Krause, “Groups of exponent 8 satisfy the 14th Engel congruence”, Proc. Amer. Math. Soc., 15:3 (1964), 491–496 | DOI | MR | Zbl

[10] A.I.Skopin, “A collection formula”, J. Math. Sci., 9 (1978), 337–341 | DOI | Zbl

[11] A.I.Skopin, “Jacobi identity and P. Hall's collection formula in two types of transmetabelian groups”, J. Math. Sci., 57 (1991), 3507–3512 | DOI | MR

[12] A.I.Skopin, “A graphic construction of the collection formula for certain types of groups”, J. Math. Sci., 63 (1993), 693–699 | DOI | MR

[13] A.I.Skopin, Y.G.Teterin, “Speeding up an algorithm to construct the Hall collection formula”, J. Math. Sci., 89 (1998), 1149–1153 | DOI | MR

[14] S.G.Kolesnikov, V.M.Leontiev, “One necessary condition for the regularity of a $p$-group and its application to Wehrfritz's problem”, Sib. Electron. Math. Rep., 19:1 (2022), 138–163 | DOI | MR

[15] V.D.Mazurov (ed.), E.I.Huhro (ed.), The Kourovka notebook. Unsolved problems in group theory. Including archive of solved problems, 16th ed., Institute of Mathematics, Novosibirsk | MR

[16] V.M.Leontiev, “On the exponents of commutators from P. Hall's collection formula”, Trudy Inst. Mat. I Mekh. UrO RAN, 28:1 (2022), 182–198 (in Russian) | DOI | MR