Equilibrium problem for a Kirchhoff--Love plate contacting by the side edge and the bottom boundary
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 355-364

Voir la notice de l'article provenant de la source Math-Net.Ru

A new model of a Kirchhoff–Love plate which is in contact with a rigid obstacle of a certain given configuration is proposed in the paper. The plate is in contact either on the side edge or on the bottom surface. A corresponding variational problem is formulated as a minimization problem for an energy functional over a non-convex set of admissible displacements subject to a non-penetration condition. The inequality type non-penetration condition is given as a system of inequalities that describe two cases of possible contacts of the plate and the rigid obstacle. Namely, these two cases correspond to different types of contacts by the plate side edge and by the plate bottom. The solvability of the problem is established. In particular case, when contact zone is known equivalent differential statement is obtained under the assumption of additional regularity for the solution of the variational problem.
Keywords: contact problem, non-penetration condition, non-convex set, variational problem.
@article{JSFU_2024_17_3_a6,
     author = {Nyurgun P. Lazarev and Evgeny M. Rudoy and Djulustan Ya. Nikiforov},
     title = {Equilibrium problem for a {Kirchhoff--Love} plate contacting by the side edge and the bottom boundary},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {355--364},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a6/}
}
TY  - JOUR
AU  - Nyurgun P. Lazarev
AU  - Evgeny M. Rudoy
AU  - Djulustan Ya. Nikiforov
TI  - Equilibrium problem for a Kirchhoff--Love plate contacting by the side edge and the bottom boundary
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 355
EP  - 364
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a6/
LA  - en
ID  - JSFU_2024_17_3_a6
ER  - 
%0 Journal Article
%A Nyurgun P. Lazarev
%A Evgeny M. Rudoy
%A Djulustan Ya. Nikiforov
%T Equilibrium problem for a Kirchhoff--Love plate contacting by the side edge and the bottom boundary
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 355-364
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a6/
%G en
%F JSFU_2024_17_3_a6
Nyurgun P. Lazarev; Evgeny M. Rudoy; Djulustan Ya. Nikiforov. Equilibrium problem for a Kirchhoff--Love plate contacting by the side edge and the bottom boundary. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 355-364. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a6/