Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_3_a12, author = {Ekaterina V. Laskovets and Evgeniy E. Makarov}, title = {The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {415--426}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/} }
TY - JOUR AU - Ekaterina V. Laskovets AU - Evgeniy E. Makarov TI - The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 415 EP - 426 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/ LA - en ID - JSFU_2024_17_3_a12 ER -
%0 Journal Article %A Ekaterina V. Laskovets %A Evgeniy E. Makarov %T The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 415-426 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/ %G en %F JSFU_2024_17_3_a12
Ekaterina V. Laskovets; Evgeniy E. Makarov. The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 415-426. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/
[1] S.R.De Groot, P.Mazur, Non-equilibrium Thermodynamics, Dover, London, 1984 | MR | Zbl
[2] Y.V.Lyulin, O.A.Kabov, “Evaporative convection in a horizontal liquid layer under shear-stress gas flow”, Int. J. Heat Mass Transfer, 70 (2014), 599–609 | DOI
[3] G.A.Ostroumov, Free convection under the conditions of the internal problem, Gos. izd-vo tehniko-teoreticheskoy lieraturi, M.-L., 1952 (in Russian) | MR
[4] R.V.Birikh, “About thermocapillary convection in a horizontal liquid layer”, PMTF, 3 (1966), 69–72 (in Russian)
[5] V.V.Pukhnachev, “Group-theoretical nature of Birich's solution and its generalizations”, Simmetriya i differentsial'nyye uravneniya, trudy II mezhdunarodnoy konferentsii (Krasnoyarsk, 21-25 August, 2000), 2000 (in Russian) | MR
[6] V.V.Pukhnachev, “Non-stationary analogues of Birich's solution”, Izvestiya AltGU, 69:1-2 (2011), 62–69 (in Russian)
[7] I.V.Stepanova, “Construction and analysis of exact solution of Oberbeck-Boussinesque equations”, J. Siberian Fed. Univ. Math $\$ Phys., 12:5 (2019), 590–597 | DOI | MR
[8] M.I.Shliomis, V.I.Yakushin, “Convection in a two-layer binary system with evaporation”, ch. Zap. Perm. Gos. Univ., Ser. Gidrodyn., 4 (1972), 129–140 (in Russian)
[9] O.N.Goncharova, M.Hennenberg, E.V.Rezanova , O.A.Kabov, “Modeling of the convective fluid flows with evaporation in the two-layer systems”, Interfacial Phenomena and Heat Transfer, 1:3 (2013), 317–338 | DOI
[10] O.N.Goncharova, E.V.Rezanova, “Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface”, J. of Appl. Mech. and Tech. Phys., 55:2 (2014), 247–257 | DOI | MR | Zbl
[11] O.N.Goncharova, E.V.Rezanova, Yu.V.Lyulin, O.A.Kabov, “Analysis of a convective fluid flow with a concurrent gas flow with allowance for evaporation”, High Temperature, 55 (2017), 887–897 | DOI
[12] V.B.Bekezhanova, O.N.Goncharova, E.V.Rezanova, I.A.Shefer, “Stability of two-layer fluid flows with evaporation at the interface”, Fluid Dynamics, 52 (2017), 189-200 | DOI | MR | Zbl
[13] E.V.Rezanova, I.A.Shefer, “Influence of thermal load on the characteristics of a flow with evaporation”, Journal of Applied and Industrial Mathematics, 11 (2017), 274–283 | DOI | MR | Zbl
[14] G.Z.Gershuni, E.M.Zhukhovitsky, Convective stability of an incompressible fluid, Nauka, M., 1972 (in Russian)
[15] O.N.Goncharova, YU.E.Yuzhkova, “Modeling of convective motion in an inclined layer with moving boundaries”, Izvestiya AltGU, 65:1-1 (2010), 22–29 (in Russian)
[16] E.E.Makarov, Modeling of two-layer flows over an inclined substrate with evaporation at a thermocapillary interface, magisterskaya dis.: zashchishchena 25.06.20, Barnaul, 2020 (in Russian)
[17] V.B.Bekezhanova, O.N.Goncharova, “Problems of Evaporative Convection (Review)”, Fluid Dynamics, 53 (2018), 69–102 | DOI | MR
[18] E.V.Rezanova, Modeling of convective flows taking into account heat and mass transfer at interfaces, dis. kand. fiz.-mat. nauk: 01.02.05: zashchishchena 04.06.19: utv. 31.10.19, Novosibirsk, 2019 (in Russian) | Zbl
[19] A.G.Kurdyashkin, V.I.Polezhaev, A.I.Fedyushkin, “Thermal convection in a horizontal layer with lateral heating”, Journal of Applied Mechanics and Technical Physics, 24 (1983), 876–882 | DOI
[20] V.K.Andreev, Y.A.Gaponenko, O.N.Goncharova, V.V.Pukhnachev, Mathematical models of convection, De Gruyter, 2012 | MR | Zbl
[21] E.Kamke, Handbook of Ordinary Differential Equations, Nauka, M., 1971 (in Russian) | MR
[22] E.E.Makarov, “Modeling of Stationary Flows of a Liquid-Gas System in an Inclined Channel Subject to Evaporation”, Journal of Siberian Federal University Mathematics $\$ Physics, 16:1 (2023), 110–120 | MR
[23] A. A. Ravdel, A. M. Ponomareva (eds.), Brief reference book of physical and chemical quantities, Spets.lit., SPb., 1998 (in Russian)