The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 415-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bilayer convective flows of liquid and gas-vapour mixture in an inclined channel are modelled when heat and mass transfer at the thermocapillary interface is taken into account. Mathematical modelling is based on the exact solutions of special type of the Navier-Stokes equations in the Oberbeck-Boussinesq approximation with the Soret and Dufour effects in the gas-vapour layer. Inclined or horizontal position of a channel and direction of the boundary thermal load determine a form of exact solution and algorithm of its construction. Examples of velocity profiles, temperature and vapour concentration distributions in the «ethanol — nitrogen» system are presented. Results of comparative analysis of the two-layer flow in the system positioned horizontally and by small inclination from the horizontal level are also presented. The influence of the thermal load intensity on the flow and mass transfer characteristics is studied.
Keywords: bilayer flow, mass transfer, inclined channel.
Mots-clés : exact solution, thermocapillary interface, convection
@article{JSFU_2024_17_3_a12,
     author = {Ekaterina V. Laskovets and Evgeniy E. Makarov},
     title = {The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {415--426},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/}
}
TY  - JOUR
AU  - Ekaterina V. Laskovets
AU  - Evgeniy E. Makarov
TI  - The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 415
EP  - 426
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/
LA  - en
ID  - JSFU_2024_17_3_a12
ER  - 
%0 Journal Article
%A Ekaterina V. Laskovets
%A Evgeniy E. Makarov
%T The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 415-426
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/
%G en
%F JSFU_2024_17_3_a12
Ekaterina V. Laskovets; Evgeniy E. Makarov. The impact of inclination angle and thermal load on flow patterns in a bilayer system taking into account the mass transfer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 415-426. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a12/

[1] S.R.De Groot, P.Mazur, Non-equilibrium Thermodynamics, Dover, London, 1984 | MR | Zbl

[2] Y.V.Lyulin, O.A.Kabov, “Evaporative convection in a horizontal liquid layer under shear-stress gas flow”, Int. J. Heat Mass Transfer, 70 (2014), 599–609 | DOI

[3] G.A.Ostroumov, Free convection under the conditions of the internal problem, Gos. izd-vo tehniko-teoreticheskoy lieraturi, M.-L., 1952 (in Russian) | MR

[4] R.V.Birikh, “About thermocapillary convection in a horizontal liquid layer”, PMTF, 3 (1966), 69–72 (in Russian)

[5] V.V.Pukhnachev, “Group-theoretical nature of Birich's solution and its generalizations”, Simmetriya i differentsial'nyye uravneniya, trudy II mezhdunarodnoy konferentsii (Krasnoyarsk, 21-25 August, 2000), 2000 (in Russian) | MR

[6] V.V.Pukhnachev, “Non-stationary analogues of Birich's solution”, Izvestiya AltGU, 69:1-2 (2011), 62–69 (in Russian)

[7] I.V.Stepanova, “Construction and analysis of exact solution of Oberbeck-Boussinesque equations”, J. Siberian Fed. Univ. Math $\$ Phys., 12:5 (2019), 590–597 | DOI | MR

[8] M.I.Shliomis, V.I.Yakushin, “Convection in a two-layer binary system with evaporation”, ch. Zap. Perm. Gos. Univ., Ser. Gidrodyn., 4 (1972), 129–140 (in Russian)

[9] O.N.Goncharova, M.Hennenberg, E.V.Rezanova , O.A.Kabov, “Modeling of the convective fluid flows with evaporation in the two-layer systems”, Interfacial Phenomena and Heat Transfer, 1:3 (2013), 317–338 | DOI

[10] O.N.Goncharova, E.V.Rezanova, “Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface”, J. of Appl. Mech. and Tech. Phys., 55:2 (2014), 247–257 | DOI | MR | Zbl

[11] O.N.Goncharova, E.V.Rezanova, Yu.V.Lyulin, O.A.Kabov, “Analysis of a convective fluid flow with a concurrent gas flow with allowance for evaporation”, High Temperature, 55 (2017), 887–897 | DOI

[12] V.B.Bekezhanova, O.N.Goncharova, E.V.Rezanova, I.A.Shefer, “Stability of two-layer fluid flows with evaporation at the interface”, Fluid Dynamics, 52 (2017), 189-200 | DOI | MR | Zbl

[13] E.V.Rezanova, I.A.Shefer, “Influence of thermal load on the characteristics of a flow with evaporation”, Journal of Applied and Industrial Mathematics, 11 (2017), 274–283 | DOI | MR | Zbl

[14] G.Z.Gershuni, E.M.Zhukhovitsky, Convective stability of an incompressible fluid, Nauka, M., 1972 (in Russian)

[15] O.N.Goncharova, YU.E.Yuzhkova, “Modeling of convective motion in an inclined layer with moving boundaries”, Izvestiya AltGU, 65:1-1 (2010), 22–29 (in Russian)

[16] E.E.Makarov, Modeling of two-layer flows over an inclined substrate with evaporation at a thermocapillary interface, magisterskaya dis.: zashchishchena 25.06.20, Barnaul, 2020 (in Russian)

[17] V.B.Bekezhanova, O.N.Goncharova, “Problems of Evaporative Convection (Review)”, Fluid Dynamics, 53 (2018), 69–102 | DOI | MR

[18] E.V.Rezanova, Modeling of convective flows taking into account heat and mass transfer at interfaces, dis. kand. fiz.-mat. nauk: 01.02.05: zashchishchena 04.06.19: utv. 31.10.19, Novosibirsk, 2019 (in Russian) | Zbl

[19] A.G.Kurdyashkin, V.I.Polezhaev, A.I.Fedyushkin, “Thermal convection in a horizontal layer with lateral heating”, Journal of Applied Mechanics and Technical Physics, 24 (1983), 876–882 | DOI

[20] V.K.Andreev, Y.A.Gaponenko, O.N.Goncharova, V.V.Pukhnachev, Mathematical models of convection, De Gruyter, 2012 | MR | Zbl

[21] E.Kamke, Handbook of Ordinary Differential Equations, Nauka, M., 1971 (in Russian) | MR

[22] E.E.Makarov, “Modeling of Stationary Flows of a Liquid-Gas System in an Inclined Channel Subject to Evaporation”, Journal of Siberian Federal University Mathematics $\$ Physics, 16:1 (2023), 110–120 | MR

[23] A. A. Ravdel, A. M. Ponomareva (eds.), Brief reference book of physical and chemical quantities, Spets.lit., SPb., 1998 (in Russian)