Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_3_a10, author = {Alexander V. Velisevich and Anna Sh. Lyubanova}, title = {On the stability of the solutions of inverse problems for elliptic equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {398--407}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a10/} }
TY - JOUR AU - Alexander V. Velisevich AU - Anna Sh. Lyubanova TI - On the stability of the solutions of inverse problems for elliptic equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 398 EP - 407 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a10/ LA - en ID - JSFU_2024_17_3_a10 ER -
%0 Journal Article %A Alexander V. Velisevich %A Anna Sh. Lyubanova %T On the stability of the solutions of inverse problems for elliptic equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 398-407 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a10/ %G en %F JSFU_2024_17_3_a10
Alexander V. Velisevich; Anna Sh. Lyubanova. On the stability of the solutions of inverse problems for elliptic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 398-407. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a10/
[1] A.V.Velisevich, “On an inverse problem for the stationary equation with a boundary condition of the third type”, J. Siberian Federal University. Mathematics and Physics, 14:5 (2021), 659–666 | DOI | MR | Zbl
[2] A.Sh.Lyubanova, A.V.Velisevich, “An inverse problem fot the quasilinear elliptic equation”, Journal of Mathematical Sciences, 270 (2023), 06370–9 | DOI | MR
[3] A.Sh.Lyubanova, “Identification of a constant coefficient in an elliptic equation”, Applicable Analysis, 87 (2008), 1121–1128 | DOI | MR | Zbl
[4] A.Sh.Lyubanova, A.Tani, “An inverse problem for pseudoparabolic equation of filtration: the existence, uniqueness and regularity”, Applicable Analysis, 90 (2011), 1557–1571 | DOI | MR | Zbl
[5] A.I.Prilepko, D.G.Orlovsky, I.A.Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 2000 | MR | Zbl
[6] A.N.Konovalov, Problems of the filtration of incompressible fluid, Nauka, Novosibirsk, 1988 (in Russian) | MR
[7] R.Helmig, A.Weiss, B.I.Wohlmuth, “Dynamic capillary effects in heterogeneous porous media”, Computational Geosciences, 11:3 (2007), 9050–1 | DOI | MR
[8] G.V.Alekseev, E.A.Kalinina, “Identification of the lower coefficient for the stationary convection-diffusion-reaction equation”, Sib. Zh. Ind. Math., 10:1(29) (2007), 3–16 (in Russian) | MR | Zbl
[9] M.M.Lavrentiev, “On the Cauchy problem for the Laplace equation”, Iz. AN URSS: S. Math., 20:6 (1956), 816–842 (in Russian) | MR
[10] M.M.Lavrentiev, On some ill-posed problems of mathematical physics, Nauka, Novosibirsk, 1962 (in Russian) | MR
[11] M.M.Lavrebtiev, V.G.Romanov, V.G.Vasiliev, Multidimensional inverse problems for differential equations, Nauka, Novosibirsk, 1969 (in Russian) | MR
[12] G.V.Alekseev, V.A.Levin, “Optimization method in problems of thermal masking of material bodies”, Dokl. RAN, 471:1 (2016), 32–36 (in Russian) | DOI | MR
[13] R.A.Aliev, “On some inverse problem for quasilinear equation of the elliptic type”, Iz. Sar. Univ. N. Ser. Math. Mech. Inf., 11:1 (2011), 3–9 (in Russian) | DOI
[14] S.G.Pyatkov, “On some inverse problems for the elliptic equations and systems”, J. Appl. Industr. Math., 5:3 (2010), 417–430 | DOI | MR
[15] G.Alessandrini, R.Caburro, “The Local Calderon Problem and the Determination at the Boundary of the Conductivity”, Comm. Partial Differential Equations, 34 (2009), 918–936 | DOI | MR | Zbl
[16] A.P.Calderon, “On an inverse boundary value problem”, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, Brazil), Soc. Brazil. Mat., Rio de Janeiro, 1980, 65–73 | MR
[17] F.Kanca, “Inverse coefficient problem for a second-order elliptic equation with nonlocal boundary conditions”, Mathematical Methods in the Applied sciences, 39 (2016), 3152–3158 | DOI | MR | Zbl
[18] M.V.Klibanov, A.Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, the Netherlands, 2004 | MR | Zbl
[19] A.I.Kozhanov, “Nonlinear inverse problems for elliptic equations”, Journal of Inverse and Ill-Posed Problems, 9:4 (2001), 413–424 | DOI | MR | Zbl
[20] M.A.Pilant, “Uniqueness Theorem for Determining Conductivity from Overspecified Boundary Data”, Journal of Mathematical Analysis and Applications, 136:1 (1988), 20–28 | DOI | MR | Zbl
[21] V.V.Soloviov, “Inverse problems for the elliptic equations in space”, Diff. Ur., 47:4 (2011), 499–506 (in Russian) | DOI | MR
[22] M.Franca, A.Sfecci, “On a diffusion model with absorption and production”, Nonlinear Analysis: Real World Applications, 34:1 (2017), 41–60 | DOI | MR | Zbl
[23] Y.T.Mehraliyev, F.Kanca, “An Inverse Boundary Value Problem for a Second Order Elliptic Equation in a Rectangle”, Mathematical Modelling and Analysis, 19:2 (2014), 241–256 | DOI | MR | Zbl
[24] Academic press, New York, 1973
[25] J.-L.Lions, E.Magenes, Non-homogeneous boundary value problems and applications, Dunod, Paris, 1968 | MR