Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 295-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we obtain an analogue of Theorem 2.2.2 from Rudin's book [6] for classical Cartan domains of the first type.
Keywords: homogeneous domain, symmetric domain, classical domain
Mots-clés : automorphism.
@article{JSFU_2024_17_3_a0,
     author = {Gulmirza Kh. Khudaiberganov and Kutlimurot S. Erkinboev},
     title = {Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {295--303},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a0/}
}
TY  - JOUR
AU  - Gulmirza Kh. Khudaiberganov
AU  - Kutlimurot S. Erkinboev
TI  - Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 295
EP  - 303
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a0/
LA  - en
ID  - JSFU_2024_17_3_a0
ER  - 
%0 Journal Article
%A Gulmirza Kh. Khudaiberganov
%A Kutlimurot S. Erkinboev
%T Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 295-303
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a0/
%G en
%F JSFU_2024_17_3_a0
Gulmirza Kh. Khudaiberganov; Kutlimurot S. Erkinboev. Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 295-303. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a0/

[1] L.A.Aizenberg, A.P.Yuzhakov, Integral representations and residues in multidimensional complex analysis, Science, Novosibirsk, 1979 (in Russian) | MR

[2] L.A.Aizenberg, Carleman formulas in complex analysis, Science, Novosibirsk, 1990 | MR

[3] L.K.Hua, Harmonic Analysis of functions of several complex variables in the classical domains, IL, M., 1959 (in Russian) | MR | Zbl

[4] G.Khudayberganov, B.B.Khidirov, U.S.Rakhmonov, “Automorphisms of matrix balls”, Vestnik NUUz, 2010, no. 3, 205–210 (in Russian)

[5] S.G.Krantz, Harmonic and complex analysis in several variables, Springer, Cham, 2017 | DOI | MR | Zbl

[6] W.Rudin, Function Theory in the Unit Ball of ${{\mathbb{C}}^{n}}$, Springer-Verlag, New York–Berlin–Heidelberg, 1980 | MR

[7] C.Siegel, Automorphic functions of several complex variables, IL, M., 1954 (in Russian)

[8] G.Khudayberganov, U.S.Rakhmonov, Z.Q.Matyakubov, “Integral formulas for some matrix domains”, Contemporary Mathematics, 662, AMS, 2016, 89–95 | DOI | MR | Zbl

[9] G.Khudaibergenov, B.T.Kurbanov, Some Problems of Complex Analysis in Matrix Siegel Domains, Contemporary Mathematics. Fundamental Directions, 68:1 (2022), 144–156 (in Russian) | DOI | MR

[10] G.Khudayberganov, J.Sh.Abdullayev, “Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 296-310 (in Russian) | DOI | MR | Zbl

[11] L.A.Aizenberg, A.M.Kytmanov, “On the possibility of holomorphic extension, into a domain, of functions defined on a connected piece of its boundary. II”, Sb. Math., 78:1 (1994), 1–10 | DOI | MR

[12] G.Khudayberganov, “On the possibility of holomorphic continuation into a matrix domain of functions defined on a segment of its Shilov boundary”, Doklady Mathematics, 50:3 (1995), 497–499 | MR

[13] J.Sh.Abdullayev, “Estimates the Bergman kernel for classical domains E. Cartan's”, Chebyshevskii sb., 22:3 (2021), 20–31 (in Russian) | DOI | MR | Zbl

[14] B.V.Shabat, Introduction to complex analysis, Part 2, 3rd ed, Science, M., 1985 (in Russian) | MR

[15] V.S.Vladimirov, Methods of functions of several complex variables, Nauka, M., 1964 (in Russian) | MR

[16] I.I.Piatetski-Shapiro, Geometry of classical domains and the theory of automorphic functions, IL, M., 1961 (in Russian) | MR

[17] E.Cartan, “Sur les domaines bornes homogenes de l 'espace de variables complexes”, Abh. Math. Sern. Univ. Hamburg, 11 (1935), 116–162 | DOI | MR | Zbl

[18] J.Sh.Abdullayev, “An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$”, Bul. Acad. Stiinte Repub. Mold. Mat., 2020, no. 3, 88–96 | Zbl

[19] V.S.Vladimirov, A.G.Sergeev, “Complex analysis in the future tube”, Modern problems of mathematics. Fundamental directions, 8, VINITI, M., 1985, 191–266 (in Russian) | MR

[20] G.Khudayberganov, A.M.Kytmanov, B.A.Shaimkulov, Complex analysis in matrix domains, Monograph, Siberian Federal University, Krasnoyarsk, 2017 \href{https://elib.sfu-kras.ru/handle/2311/59938?show=full}f{https://elib.sfu-kras.ru/handle/2311/59938?show=full} (in Russian)

[21] G.Khudayberganov, U.S.Rakhmonov, “Carleman Formula for Matrix Ball of the Third Type. Algebra, Complex Analysis, and Pluripotential Theory”, USUZCAMP 2017 (Uzbekistan, 2017), Springer Proceedings in Mathematics $\$ Statistics, 264, Springer, 2017 | MR

[22] G.Khudayberganov, U.S.Rakhmonov, “The Bergman and Cauchy-Szegő kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7:3 (2014), 305–310 | MR | Zbl

[23] G. Kh.Khudayberganov, J.Sh.Abdullayev, “Relationship between the Kernels Bergman and Cauchy-Szegő in the domains $\tau +\left( n-1 \right)$ and ${{\Re }_{IV}}\left( n \right)$”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:5 (2020), 559–567 | DOI | MR

[24] S.Kosbergenov, A.M.Kytmanov, S.G.Myslivets, “On a boundary Morera theorem for classical domains”, Siberian Math. J., 40:3 (1999), 506–514 | DOI | MR | Zbl

[25] S.G.Myslivets, “On the Szegö and Poisson kernels in the convex domains in ${{\mathbb{C}}^{n}}$”, Russian Math. (Iz. VUZ), 63:1 (2019), 35–41 | DOI | MR | Zbl

[26] U.S.Rakhmonov, J.Sh.Abdullayev, “On Properties of the Second Type Matrix Ball ${{B}_{2}}\left( m,n \right)$from Space ${{\mathbb{C}}^{n}}\left[ m,m \right]$”, J. Sib. Fed. Univ. Math. Phys., 15:3 (2022), 329–342 | DOI | MR

[27] U.S.Rakhmonov, J.Sh.Abdullayev, “On volumes of matrix ball of third type and generalized Lie balls”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 548–557 | DOI | MR | Zbl

[28] M.Xiao, “Regularity of mappings into classical domains”, Mathematische Annalen, 378:3-4 (2020), 1271–1309 | DOI | MR | Zbl

[29] M.Xiao, “Bergman-Harmonic Functions on Classical Domains”, International Mathematics Research Notices, 2021:22 (2021), 17220–17255 | DOI | MR | Zbl

[30] R.Bellman, Introduction to matrix theory, Nauka, M., 1976 (in Russian) | MR