A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 238-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the field of condensed matter physics, machine learning methods have become an increasingly important instrument for researching phase transitions. Here we present a method for calculating the universal characteristics of spin models using an Ising model that is exactly solvable in two dimensions. The method is based on a convolutional neural network (CNN) with controlled learning. The scaling functions prove the continuing type of phase transition for the 2D Ising model. As a result of the proposed technique, it has been possible to calculate correlation length directly.
Keywords: machine learning, convolutional neural networks, Monte Carlo methods, Ising model, scaling, correlation length, magnetic susceptibility.
@article{JSFU_2024_17_2_a9,
     author = {Alina A. Chubarova and Marina V. Mamonova and Pavel V. Prudnikov},
     title = {A study of the scaling behavior of the two-dimensional {Ising} model by methods of machine learning},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {238--245},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/}
}
TY  - JOUR
AU  - Alina A. Chubarova
AU  - Marina V. Mamonova
AU  - Pavel V. Prudnikov
TI  - A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 238
EP  - 245
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/
LA  - en
ID  - JSFU_2024_17_2_a9
ER  - 
%0 Journal Article
%A Alina A. Chubarova
%A Marina V. Mamonova
%A Pavel V. Prudnikov
%T A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 238-245
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/
%G en
%F JSFU_2024_17_2_a9
Alina A. Chubarova; Marina V. Mamonova; Pavel V. Prudnikov. A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 238-245. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/

[1] F.A.Gomez Albarracin, H.D.Rosales, “Machine learning techniques to construct detailed phase diagrams for skyrmion systems”, Phys. Rev. B, 105 (2022), 214423 | DOI

[2] W.Wang, Z.Wang, Y.Zhang, B.Sun, K.Xia, “Learning Order Parameters from Videos of Skyrmion Dynamical Phases with Neural Networks”, Phys. Rev. V, 16 (2021), 014005 | DOI

[3] M.Kumar, V.Banerjee, S.Puri, M.Weigel, “Critical behavior of the three-state random-field Potts model in three dimensions”, Phys. Rev. Res., 4 (2022), L042041 | DOI

[4] C.W.Glass, A.R.Oganov, N.Hansen, “USPEX – evolutionary crystal structure prediction”, Comp. Phys. Comm., 175 (2006), 713–720 | DOI | Zbl

[5] C.W.Glass, A.R.Oganov, “Crystal structure prediction using ab initio evolutionary techniques: Principles and application”, J. Chem. Phys., 124 (2006), 244704 | DOI

[6] K.Shiina, H.Mori, Y.Okabe, H.K.Lee, “Machine-Learning Studies on Spin Models”, Sci. Rep., 10 (2020), 2177 | DOI

[7] A.Azizi, M.Pleimling, “A cautionary tale for machine learning generated configurations in presence of a conserved quantity”, Sci. Rep., 11 (2021), 6395 | DOI

[8] A.Tanaka, A.Tomiya, “A cautionary tale for machine learning generated configurations in presence of a conserved quantity”, J. Phys. Soc. Jpn., 86 (2017), 063001 | DOI

[9] S.J.Wetzel, M.Scherzer, “Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2) Lattice Gauge Theory”, Phys. Rev. B, 96 (2017), 184410 | DOI

[10] N.Maskara, M.Buchhold, M.Endres, E. van Nieuwenburg, “Learning algorithm relecting universal scaling behavior near phase transitions”, Phys. Rev. Res., 4 (2022), L022032 | DOI

[11] D.A.Martin, T.L.Ribeiro, and etc., “Box-scaling as a proxy of finite-size correlations”, Sci. Rep., 11 (2020), 15937 | DOI

[12] Ju.V.Mikhailova, V.P.Krainov, R.O.Zaitsev, Two-dimensional Ising model (exact solution), MIPT, M., 2015

[13] N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth, A.H.Teller, E.Teller, “Equations of State Calculations by Fast Computing Machines”, J. Chem. Phys., 21 (1953), 1087 | DOI | Zbl