Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_2_a9, author = {Alina A. Chubarova and Marina V. Mamonova and Pavel V. Prudnikov}, title = {A study of the scaling behavior of the two-dimensional {Ising} model by methods of machine learning}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {238--245}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/} }
TY - JOUR AU - Alina A. Chubarova AU - Marina V. Mamonova AU - Pavel V. Prudnikov TI - A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 238 EP - 245 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/ LA - en ID - JSFU_2024_17_2_a9 ER -
%0 Journal Article %A Alina A. Chubarova %A Marina V. Mamonova %A Pavel V. Prudnikov %T A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 238-245 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/ %G en %F JSFU_2024_17_2_a9
Alina A. Chubarova; Marina V. Mamonova; Pavel V. Prudnikov. A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 238-245. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a9/
[1] F.A.Gomez Albarracin, H.D.Rosales, “Machine learning techniques to construct detailed phase diagrams for skyrmion systems”, Phys. Rev. B, 105 (2022), 214423 | DOI
[2] W.Wang, Z.Wang, Y.Zhang, B.Sun, K.Xia, “Learning Order Parameters from Videos of Skyrmion Dynamical Phases with Neural Networks”, Phys. Rev. V, 16 (2021), 014005 | DOI
[3] M.Kumar, V.Banerjee, S.Puri, M.Weigel, “Critical behavior of the three-state random-field Potts model in three dimensions”, Phys. Rev. Res., 4 (2022), L042041 | DOI
[4] C.W.Glass, A.R.Oganov, N.Hansen, “USPEX – evolutionary crystal structure prediction”, Comp. Phys. Comm., 175 (2006), 713–720 | DOI | Zbl
[5] C.W.Glass, A.R.Oganov, “Crystal structure prediction using ab initio evolutionary techniques: Principles and application”, J. Chem. Phys., 124 (2006), 244704 | DOI
[6] K.Shiina, H.Mori, Y.Okabe, H.K.Lee, “Machine-Learning Studies on Spin Models”, Sci. Rep., 10 (2020), 2177 | DOI
[7] A.Azizi, M.Pleimling, “A cautionary tale for machine learning generated configurations in presence of a conserved quantity”, Sci. Rep., 11 (2021), 6395 | DOI
[8] A.Tanaka, A.Tomiya, “A cautionary tale for machine learning generated configurations in presence of a conserved quantity”, J. Phys. Soc. Jpn., 86 (2017), 063001 | DOI
[9] S.J.Wetzel, M.Scherzer, “Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2) Lattice Gauge Theory”, Phys. Rev. B, 96 (2017), 184410 | DOI
[10] N.Maskara, M.Buchhold, M.Endres, E. van Nieuwenburg, “Learning algorithm relecting universal scaling behavior near phase transitions”, Phys. Rev. Res., 4 (2022), L022032 | DOI
[11] D.A.Martin, T.L.Ribeiro, and etc., “Box-scaling as a proxy of finite-size correlations”, Sci. Rep., 11 (2020), 15937 | DOI
[12] Ju.V.Mikhailova, V.P.Krainov, R.O.Zaitsev, Two-dimensional Ising model (exact solution), MIPT, M., 2015
[13] N.Metropolis, A.W.Rosenbluth, M.N.Rosenbluth, A.H.Teller, E.Teller, “Equations of State Calculations by Fast Computing Machines”, J. Chem. Phys., 21 (1953), 1087 | DOI | Zbl