Further remarks on the explicit generating function expression of the invariant measure of critical Galton-Watson branching systems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 220-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the critical Galton-Watson branching system with infinite variance of the offspring law. We provide an alternative arguments against what Slack [9] did when it seeked for a local expression in the neighborhood of point $1$ of the generating function for invariant measures of the branching system. So, we obtain the global expression for all $s\in[0,1)$ of this generating function. A fundamentally improved version of the differential analogue of the basic Lemma of the theory of critical branching systems is established. This assertion plays a key role in the formulation of the local limit theorem with explicit terms in the asymptotic expansion of local probabilities. We also determine the decay rate of the remainder term in this expansion.
Keywords: Galton–Watson branching system, generating functions, slow variation, basic lemma, transition probabilities, invariant measures, limit theorems
Mots-clés : convergence rate.
@article{JSFU_2024_17_2_a7,
     author = {Azam A. Imomov and Sarvar B. Iskandarov},
     title = {Further remarks on the explicit generating function expression of the invariant measure of critical {Galton-Watson} branching systems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {220--228},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a7/}
}
TY  - JOUR
AU  - Azam A. Imomov
AU  - Sarvar B. Iskandarov
TI  - Further remarks on the explicit generating function expression of the invariant measure of critical Galton-Watson branching systems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 220
EP  - 228
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a7/
LA  - en
ID  - JSFU_2024_17_2_a7
ER  - 
%0 Journal Article
%A Azam A. Imomov
%A Sarvar B. Iskandarov
%T Further remarks on the explicit generating function expression of the invariant measure of critical Galton-Watson branching systems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 220-228
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a7/
%G en
%F JSFU_2024_17_2_a7
Azam A. Imomov; Sarvar B. Iskandarov. Further remarks on the explicit generating function expression of the invariant measure of critical Galton-Watson branching systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 220-228. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a7/

[1] K.B.Athreya, P.E.Ney, Branching processes, Springer, New York, 1972 | MR | Zbl

[2] N.H.Bingham, C.M.Goldie, J.L.Teugels, Regular variation, Cambridge, 1987 | MR | Zbl

[3] T.E.Harris, The theory of branching processes, Springer-Verlag, 1963 | MR | Zbl

[4] A.A.Imomov, E.E.Tukhtaev, “On application of slowly varying functions with remainder in the theory of Galton-Watson branching process”, Jour. Siber. Fed. Univ.: Math. Phys., 12:1 (2019), 51–57 | DOI | MR

[5] A.A.Imomov, “On a limit structure of the Galton-Watson branching processes with regularly varying generating functions”, Prob. and math. stat., 39:1 (2019), 61–73 | DOI | MR | Zbl

[6] A.A.Imomov, E.E.Tukhtaev, “On asymptotic structure of critical Galton-Watson branching processes allowing immigration with infinite variance”, Stochastic Models, 39:1 (2023), 118–140 | DOI | MR | Zbl

[7] H.Kesten, P.E.Ney, F.L.Spitzer, “The Galton-Watson process with mean one and finite variance”, Jour. Appl. Prob., 11:4 (1966), 579–611 | MR | Zbl

[8] E.Seneta, “The Galton-Watson process with mean one”, Jour. Appl. Prob., 4 (1967), 489–495 | DOI | MR | Zbl

[9] R.S.Slack, “A branching process with mean one and possible infinite variance”, Wahrscheinlichkeitstheor und Verv. Geb., 9 (1968), 139–145 | DOI | MR | Zbl