Analysis of the unstable state of a nematic liquid crystalbased on a simplified dynamic model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 272-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fréedericksz effect consisting in the reorientation of liquid crystal molecules in an extended layer under the action of inhomogeneous electric field is simulated in the paper. The constitutive equations for tangential stress, angular velocity, and electric potential are obtained from the equations of a simplified dynamic model of a 5CB nematic liquid crystal in the acoustic approximation. The algorithm for numerical solution of the constitutive equations is constructed on the basis of finite-difference schemes. The algorithm is implemented with the use of CUDA technology for computers with graphics accelerators.
Keywords: liquid crystal, dynamics, electric potential, Fréedericksz effect, method of straight lines, parallel programming, CUDA technology.
Mots-clés : Laplace equation
@article{JSFU_2024_17_2_a13,
     author = {Irina V. Smolekho},
     title = {Analysis of the unstable state of a nematic liquid crystalbased on a simplified dynamic model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {272--281},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a13/}
}
TY  - JOUR
AU  - Irina V. Smolekho
TI  - Analysis of the unstable state of a nematic liquid crystalbased on a simplified dynamic model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 272
EP  - 281
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a13/
LA  - en
ID  - JSFU_2024_17_2_a13
ER  - 
%0 Journal Article
%A Irina V. Smolekho
%T Analysis of the unstable state of a nematic liquid crystalbased on a simplified dynamic model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 272-281
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a13/
%G en
%F JSFU_2024_17_2_a13
Irina V. Smolekho. Analysis of the unstable state of a nematic liquid crystalbased on a simplified dynamic model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 272-281. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a13/

[1] V. Fréedericksz, V. Zolina, “Forces causing the orientation of an anisotropic liquid”, Trans. Faraday Soc., 29 (1933), 919–930 | DOI

[2] C.W. Oseen, “The theory of liquid crystals”, Trans. Faraday Soc., 29 (1933), 883–899 | DOI | Zbl

[3] F.C. Frank, “On the theory of liquid crystals”, Disc. Faraday Soc., 25 (1958), 19–28 | DOI

[4] J.L. Ericksen, “Conservation laws for liquid crystals”, Trans. Soc. Rheol., 5:1 (1961), 23–34 | DOI | MR

[5] F.M. Leslie, “Some constitutive equations for liquid crystals”, Arch. Ration. Mech. Anal., 28:4 (1968), 265–283 | DOI | MR | Zbl

[6] V. Sadovskii, O. Sadovskaya, “Acoustic Approximation of the Governing Equations of Liquid Crystals under Weak Thermomechanical and Electrostatic Perturbations”, Advances in Mechanics of Microstructured Media and Structures, chapt. 17, Advanced Structured Materials, 87, eds. F. dell'Isola, V.A. Eremeyev, A. Porubov, Springer, Cham, 2018, 297–341 | DOI | MR

[7] V.M. Sadovskii, O.V. Sadovskaya, “Mathematical modeling of inhomogeneous electric field impact on a liquid crystal layer”, ZAMM, 103:2023 (2022), e202200248 | DOI | MR

[8] V.M. Sadovskii, O.V. Sadovskaya, I.V. Smolekho, “Parallel implementation of the algorithm describing the behavior of liquid crystals under the action of electric field”, AIP Conf. Proc., 2025 (2018), 070005 | DOI

[9] K. Skarp, S.T. Lagerwall, B. Stebler, “Measurements of hydrodynamic parameters for nematic 5CB”, Mol. Cryst. Liq. Cryst., 60:3 (1980), 215–236 | DOI

[10] B.A. Belyaev, N.A. Drokin, V.F. Shabanov, V.N. Shepov, “Dielectric anisotropy of 5CB liquid crystal in a decimeter wavelenght range”, Phys. Solid State, 42:3 (2000), 577–579 | DOI